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Abstract
We present a unitary cluster approach to the calculation of several electron
and photon spectroscopies, ranging from core and valence level photoelectron
diffraction and absorption to electron, Auger and anomalous diffraction.
Electron energy loss and Auger–photoelectron coincidence spectroscopies can
also be treated in the same frame. This approach is based on multiple-scattering
theory with a complex optical potential of the Hedin–Lundqvist type and is
valid for all electron kinetic energies. Similarities and differences between these
diffraction techniques are examined and cluster size convergence is discussed in
connection with the electron mean free path. Applications to selected problems
are presented to illustrate the method, both for structural and electronic analysis.
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1. Introduction

We propose in the present paper to develop a unitary cluster approach for a variety
of structural techniques, like core and valence state photoelectron diffraction (PED), low
and medium energy electron diffraction (LEED/MEED), Auger electron diffraction (AED),
diffraction anomalous fine structure (DAFS), resonant elastic x-ray scattering (REXS), Auger
photoelectron coincidence spectroscopy (APECS) or electron energy loss spectroscopy (EELS)
based on multiple-scattering (MS) theory with effective optical (complex) potential, in analogy
with similar developments in the theory of x-ray absorption fine structure (XAFS) [1].

The rather good success of this theory in describing both amplitudes and phases of the
fine structure oscillations in absorption spectra ([2–5] and references therein) makes one fairly
confident that one can also reach the same level of accuracy in PED, LEED, MEED, AED,
APECS, DAFS, REXS and EELS. In fact, all these techniques share with XAFS the fact of
having the same continuum wavefunction for the probe electron in the elastic channel either
in the intermediate or in the final state. This scattering wavefunction obeys an effective
Schrödinger equation with an optical potential that describes the effects of the elimination of
the inelastic channels from the diffraction problem.

One of the advantages of this unitary approach is that it makes possible a comparison
among the various diffraction techniques and allows the discussion of their similarities and
differences in a rather direct way. Another advantage is the use of a complex optical potential
of the Hedin–Lundqvist type on the basis of the GW approximation for the electron self-
energy [6–8], whose imaginary part is able to describe the extrinsic inelastic losses of the
electron in the final continuum state and gives rise to a finite mean free path of the electron
probe. Therefore, the amplitude reduction in the elastic diffraction channel consequent to this
loss phenomenon is taken automatically into account.

This fact in turn makes a cluster approach to the diffraction problem very natural since
only atoms within a sphere with a radius roughly equal to twice the mean free path around the
emitter in the case of PED and AED are expected to contribute to the diffraction patterns (we
will show how a LEED/MEED process, where there is no emitter, can be reduced to this case).
This finding is at variance with what is found in XAS where only atoms within a sphere with
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radius equal to the mean free path contribute to the fine oscillations. In an MS picture, such
as the one we will adopt in this paper, the difference comes from the fact that in absorption
spectra only closed paths that return to the emitter are allowed whereas in all the other cases
both closed and open paths are allowed, due to the detection of the final state electron. Apart
from this difference, all the above structural techniques share the property of probing the local
environment of the emitter due to the final lifetime of the probe.

Actually, it is through this concept (or its equivalent counterpart, the finite mean free path)
that it is possible to reconcile the seemingly opposite points of view of the short-range order and
the long-range order theories in the description of diffraction processes in periodic systems, as
pointed out by Schaich [9] and shown explicitly to all orders of MS by Natoli and Benfatto [10]
for the absorption case. Therefore, the use of a complex potential introduces automatically in
the calculations a built-in size effect and eliminates the need for adding ‘by hand’ a mean free
path parameter [11, 12]. This correlation between size effect and mean free path will be used
to discuss cluster size convergence in relation to mean free path length.

In this review, we shall sketch a derivation of the effective Schrödinger equation (SE) from
the many-body formulation of the multichannel scattering problem given by Natoli et al [13],
along the lines described by Natoli et al [1]. In this way we shall derive an expression for the
cross-section of PED (or for the decay rate in the case of AED), LEED/MEED, APECS, DAFS,
REXS and EELS valid for all kinetic energies of the electron in the continuum final state with
no approximation for the geometrical shape of the cluster potential. This approach will allow
a realistic description of the surface potential and is currently under progress. However, due to
its simplicity, a specialization of the theory to the muffin-tin case will be given and used.

We shall adopt throughout this paper a non-relativistic approach, so that in the expansion
of the electron wavefunction we shall use the l,m, σ basis. In atomic calculations this is not a
limitation, since relativistic effects can be taken into account by solving explicitly for the upper
component of the Dirac equation, along the lines described in [14]. The resulting pseudo-
Schrödinger equation (PSE) is closely akin to the Pauli equation, which can be easily solved in
the spin–orbit coupled basis j, jz. The only small price to pay is the modification of the atomic
potential appearing in the Dirac equation, as detailed in the reference above. As soon as this is
done, relativistic effects can be easily incorporated in the calculation of atomic t-matrices5 and
in the formulation of the MS theory, which can be written without difficulty in the j, jz basis.
Recourse to a mixed basis (spin–orbit coupled for the initial core states, where spin–orbit effects
are relevant, and uncoupled for the final states, when spin–orbit effects are negligible) is also
possible and has been used. However, the use of the l,m, σ basis in the final state becomes
again relevant in presence of spin-polarized potentials, when treating magnetic effects. This is
because j is no longer a good quantum number at the atomic level and MS theory becomes a
two-channel problem connected by the spin-flip terms of the spin–orbit interaction. Work along
this line is in progress by the authors of the present review, which however concerns only non-
magnetic effects. In any case, a completely relativistic formulation of MS theory can be found
even in textbooks [15], and programs are available to calculate in this approach the electronic
properties of matter ([16] and references therein).

Many-particle relativistic effects also play an important role, e.g. in Auger electron
emission and core level photoemission, but their inclusion in the respective transition
amplitudes is not considered in this review. The emphasis here is rather on how to incorporate
realistically diffraction effects in the wavefunction of the continuum electrons and for these
electrons relativistic effects are not so important.

5 Notice that in this approximation the relativistic transition matrix element of an external electromagnetic perturbation
reduces to the non-relativistic expression.
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The general derivation described above is used for discussing both the low and high energy
limits of the theory in the attempt to establish rules for the convergence of the MS series.
At the same time we show that the reduction procedure from the many-body formulation to
the description of the completely relaxed (elastic) channel can also in principle be applied to
the description of any channel, in particular the one describing Kikuchi electrons, for which
one can establish an effective Schrödinger equation analogous to the elastic case. Physical
considerations can indeed be given whereby the effective potential in this case should be very
similar to the one relative to the elastic channel. As a consequence, the diffraction mechanism
of these electrons is described by the same theory, thus substantiating the conclusion put
forward by Osterwalder et al [17]. Applications to selected problems will be presented to
illustrate the method, both for structural and electronic analysis.

2. Calculation of cross-sections

2.1. General expression of the cross-section

In this review we are interested in spectroscopies in which the probe particle is an electron,
the source of which can be either external to the sample under investigation (as in the case
of an electron beam scattering off the sample) or internal (created e.g. by a real or virtual
photoemission process). Therefore we shall restrict ourselves to the cases in which the
impinging and detected particles are either photons or electrons. For the convenience of the
reader and to fix the notations we derive here the general expressions for the cross-sections for
such spectroscopies and discuss in the following their interpretation within a unified framework,
namely multiple-scattering theory.

We assume that the matter sample (atoms and/or molecules in gaseous or condensed phase)
is described by states labelled by |ϕ〉, with a suitable index to characterize their type. Similarly,
we denote by |φ〉 the states of a given particle in the incoming beam. The states of the
total interacting system (incoming particle + matter sample) are labelled |�〉. The potential
describing the interaction of the incident particles with the sample is denoted by VI .

If the Hamiltonians of the incoming particle and the matter alone are noted respectively as
HP and HM , then the total Hamiltonian of the system is

H = HP + HM + VI = Ho + VI

where Ho describes the system without interaction. The eigenstates of the unperturbed
Hamiltonian Ho are then simply

|�〉 = |ϕ〉|φ〉.
If VI is sufficiently ‘small’, under conditions to be conveniently specified, we can treat it as
a perturbation of the system described by Ho. In this case, standard perturbation theory tells
us that we can approximate the eigenstates |�〉 of the total Hamiltonian H in terms of the
eigensolutions |�〉 of the unperturbed Hamiltonian Ho = HP + HM . These eigensolutions can
be written as

Ho|�i〉 = Ei |�i〉 with Ei = Ei + Ei

Ho|� f 〉 = E f |� f 〉 with E f = E f + E f
(1)

E and E are the eigenvalues associated with |ϕ〉 and |φ〉 respectively for the corresponding
Hamiltonian. We are interested here in transitions from an initial state |�i〉 of Ho to a final
state |� f 〉 of the same Hamiltonian that can result from the action of the interaction term VI .
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From time-dependent perturbation theory [18], we know that the transition probability per
unit time from state |�i〉 to state |� f 〉 under the effect of the perturbation VI is given by

Wi→ f = 2π

h̄

∣
∣〈� f |TI |�i 〉

∣
∣
2
ρ(E f ). (2)

Here ρ(E f ) is the density of final states of the detected particle and TI is the transition
operator associated with the interaction potential VI . Transition operators are introduced in
scattering theory as a convenient way to describe the effect of a given perturbation on the
eigenstates of the unperturbed system. Following their usual definition, TI can be expressed by
the relation [19]

TI = VI + VI G(Ei)VI (3)

where G(Ei) is the resolvent of the total Hamiltonian H at the energy of the initial state (or of
the final state as the energy E of the total system is conserved). This resolvent is defined by

G(Ei ) = lim
ε→0+

1

Ei − H ± iε
. (4)

An infinitesimal imaginary part is introduced in order to impose appropriate boundary
conditions when required. The action of G(Ei) on any eigenstate |�n〉 of H gives

G(Ei )|�n〉 = |�n〉
Ei − En

. (5)

At the lowest order in VI , the transition operator can be approximated by the perturbation
VI . When inserted in (2), this gives Fermi’s golden rule No 2 [18]. To second order in VI , it
can be replaced by

TI ≈ VI + VI Go(Ei)VI (6)

which gives Fermi’s golden rule No 1 [20]. Go(Ei ) is the unperturbed resolvent and is obtained
from (4) by replacing H by Ho.

The cross-section is then obtained from (2) by dividing by the flux I0 of incoming particles.

2.2. Cross-section for incoming photons

If we neglect the magnetic terms, the interaction potential describing the interaction of a photon
beam with an electron can be written, in the non-relativistic limit, as

VI = e

m
A ·p + e2

2m
A2 (7)

where p is the electron momentum and A the vector potential of the electromagnetic field,
which is given by

A(r) =
∑

q,êq

√

h̄

2ε0ωqV
[

aq,êq
eiq·rêq + a†

q,êq
e−iq·rê∗

q

]

. (8)

Here aq,êq
is the annihilation operator for photons and a†

q,êq
is the corresponding creation

operator. The sum is over the wavevector q and the two polarizations êq of the incoming
wave field. V is the normalization volume. For x-ray radiation, the inverse of q (Å) =
0.5 × 10−3h̄ωq(eV ) can be large compared to the extension of the core orbitals involved in
the transition. In this case, q · r � 1 and the exponential can be replaced either by 1 (dipole
approximation) or by 1 + iq · r (quadrupole approximation).

In order to simplify the notations, we have written equation (7) in the one-electron case.
In the more general case of many-electron systems, the term e/mA · p has to be replaced by
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∑

i qi/mipi · A, where the sum runs on all the particles composing the system. In this case
the Coulomb term that describes the interaction between the particles in the system is actually
part of the unperturbed Hamiltonian HM and therefore will not appear in the expression of
the interaction potential. Due to the 1/mi scaling of the matter–radiation interaction potential,
we will restrict ourselves here to the case of electrons, as nucleons will contribute much less.
Except for EELS, we shall continue to use for simplicity the one-electron notation for the
derivation of the various cross-sections. The extension to the many-body case will then be
straightforward.

If we introduce the expression (7) of the interaction potential in (6), we obtain to the second
order in e/m

T (2)
I = e

m
A ·p +

( e

m

)2 [m

2
A ·A + A · pGo(Ei )A ·p

]

+ O

(
e3

m3

)

. (9)

The term linear in e/m describes first order processes in which only one photon at a time
is created or absorbed, while the second term in (e/m)2 describes second order processes in
which two photons are involved, as in photon scattering. Therefore, the transition operator T (2)

I
expressed in (9) can describe three kinds of processes: emission, absorption or scattering of
photons.

We shall not consider in this work the case of emission but we focus instead on the
processes of absorption and scattering of photons, which many spectroscopies we review here
rely on. In the case of absorption, if the final state photoelectron is detected, the spectroscopy is
called photoemission spectroscopy. One speaks instead of photoabsorption spectroscopy when
one counts only the number of absorbed photons per second out of a flux of incident photons.
In transmission spectroscopy for example, calling the transmitted and incident photon flux I
and I0, the absorption coefficient as a function of the incident photon energy h̄ω is given by
µ(h̄ω) = ln(I0/I ). However, an alternative way to measure the number of absorbed photons
is to count the number of holes created in the photoemission process either through the decay
products of the excited atoms of the substance under investigation or by counting the total
number of emitted photoelectrons. It is then clear that the photoabsorption cross-section is
obtained by the photoemission cross-section by integrating over all final state photoelectrons
compatible with total energy conservation.

The cross-section dσ/dk̂ for emission of an electron in the element of solid angle around
the direction k̂ is given by

dσ

dk̂
I0 = dW

dk̂
(10)

where I0 = c/V [21] is the incident photon flux and dW/dk̂ is the transition probability per unit
time and solid angle given by equation (2), in which ρ(E f ) is now the density of free final states
for an electron ejected along k̂ at the energy E f . This latter is given by the Einstein relation
E f = h̄ω − Eexc, where Eexc is the total excitation energy left in the system under study.
Moreover, |�i〉 is the system initial state, the tensor product of a photon state a†

q|0〉 times a
matter electronic ground state |φe

g〉, whereas |� f 〉 is the product of the photon vacuum state
|0〉 times an electronic final state |φ−

k 〉, the time-reversed solution of the Schrödinger equation
with scattering boundary conditions at infinity. This condition will be better specified later on
in section 3.

For the transition operator in the case of one-photon absorption, after replacing the vector
potential A by its expression (8), we obtain

TI,abs = e

m

∑

q,êq

√

h̄

2εoωqV
(êq ·p)aq,êq

eiq·r (11)
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so that the photoemission cross-section becomes

dσ

dk̂
= 4π2α

h̄

m2ωq

ρ(E f )
∣
∣〈φ−

k |êq ·peiq·r|φi〉
∣
∣
2

(12)

where α = e2/(4πε0h̄c) is the fine structure constant, a dimensionless coefficient whose
numerical value is α ∼ 1/137.

Likewise, the photoabsorption cross-section is obtained by dividing the transition
probability Wi→ f summed over all possible final states consistent with energy conservation
by the incoming flux I0 of photons:

σabs = 4π2α
h̄

m2ωq

∑

f

∣
∣〈φ f |êq · peiq·r|φi〉

∣
∣
2
δ(Ei − E f + h̄ωq). (13)

Equations (12) and (13) simplify in the dipole approximation. In this case, the exponential
term can be dropped and making use of the relation

〈φn |êq · p|φm〉 = imωq〈φn|êq · r|φm〉
we obtain for the photoemission cross-section

dσ

dk̂
= 4π2αh̄ωqρ(E f )

∣
∣
∣〈φ−

k̂
|êq · r|φi〉

∣
∣
∣

2
(14)

and for the photoabsorption cross-section

σabs = 4π2αh̄ωq

∑

f

∣
∣〈φ f |êq · r|φi〉

∣
∣
2
δ(Ei − E f + h̄ωq) (15)

which are the standard formulae in the dipole approximation. The replacement of r by
∑N

i ri

gives the corresponding N-electron formulae, |φi〉 and |φ f 〉 now being N-electron states.
The density of free photoelectron final states per unit energy and solid angle is easily seen

to be

ρ(E f ) = V
(2π)3

d3k

dE f dk̂
= V
(2π h̄)3

h̄km. (16)

It is customary to incorporate this factor into the normalization of the photoelectron
wavefunction passing from a plane wave normalization

∫

dr φ∗
k(r)φk′(r) = (2π)3

V δ(k − k′)

to a normalization to one state per unit energy interval
∫

dr φ∗
k (r)φk′(r) = 2m

h̄2
δ(k2 − k ′2).

In fact, calling N the normalization factor such that
√Nφk = φk , we find

2m

h̄2
δ(k2 − k ′2) = N (2π)3

V δ(k − k′) = N (2π)3

V
2k

k2
δ(k2 − k ′2)δ(k̂ − k̂′)

so that

N = V
(2π)3

k

2

2m

h̄2
= k

16π3
(17)

which is identical to ρ(E f ), the last equality holding in atomic units of lengths and Rydberg
units of energy (2m/h̄2 → 1).

The second order term in the expression (9) of T (2)
I , which is the scattering term, involves

two photons, one created and one absorbed. There are obviously three possibilities for such a



R182 Topical Review

process in a time-dependent scheme. The first one, which corresponds to the term in A · A,
describes a situation in which the incoming photon is absorbed at the same time as the outgoing
photon is created. We label this process (a). The second possibility, often termed the direct
process, is when the outgoing photon is created after the absorption of the incoming one. We
call it (b). In this case, an electron is excited in the time between the two processes. Finally,
the exchange process (c) is associated with the creation of the outgoing photon before the
absorption of the incoming one. Both processes (b) and (c) differ only by the nature of the
intermediate state. For (b), it corresponds to the matter system in an excited state |n〉 with no
photons. In contrast, in case (c), the system is in state |n〉 plus two photons.

We can now calculate the transition operators that will allow the computation of the cross-
section of these processes. Taking the matrix elements between the initial and final states, we
find [22] for case (a)

〈� f |T (2)
I (a)|�i〉 = e2

2m

h̄

2εoV
1√

ωq f ωqi

〈� f |(ê∗
q f

· êqi )e
i(qi −q f )·r

×
[

aqi êqi
a†

q f êq f
+ a†

q f êq f
aqi êqi

]

|�i〉. (18)

For elastic scattering, the initial and final states of the matter system are the same and this
matrix element becomes

fT (Q) =
∫

|φ(r)|2e−iQ·r dr (19)

Q is the momentum transfer vector given by Q = q f − qi . In the case of an atom the quantity
fT (Q) is called the atomic form factor and it is the Fourier transform of the atomic charge
density.

The contributions of the two other terms (b) and (c) can be worked out similarly. They
give [22–24]

〈� f |T (2)
I (b)|�i〉 = N

∑

n

〈φ f |ê∗
q f

· pe−iq f ·r|φn〉〈φn|êqi ·peiqi ·r|φi 〉
Ei − En + h̄ωqi − iε

〈� f |T (2)
I (c)|�i〉 = N

∑

n

〈φ f |êqi ·peiqi ·r|φn〉〈φn |ê∗
q f

·pe−iq f ·r|φi〉
Ei − En − h̄ωq f − iε

.

(20)

In the independent particle picture the sum is over all the unoccupied states |φn〉; in the
many-body approach it is over all states. The prefactor N is given by

N =
( e

m

)2 h̄

2εoV
1√

ωq f ωqi

.

Adding the three terms together, dividing by the incoming flux c/V and multiplying by the
density of photons in the final state (according to (2)) given by [21]

V
(2π)3

(h̄ωq f )
2

h̄3c3

the cross-section for the scattering case becomes

dσ

d�
= r 2

o

ωq f

ωqi

∣
∣
∣
∣
ê∗

q f
· êqi 〈φ f |e−iQ·r|φi〉

+ 1

m

[
∑

n

〈φ f |ê∗
q f

·pe−iq f ·r|φn〉〈φn |êqi · peiqi ·r|φi〉
Ei − En + h̄ωqi − iε

+ 〈φ f |êqi · peiqi ·r|φn〉〈φn|ê∗
q f

· pe−iq f ·r|φi〉
Ei − En − h̄ωq f − iε

]∣
∣
∣
∣

2

. (21)
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Here d� is the element of solid angle about q f and ro = e2/(4πε0mc2) is the classical
radius of the electron. This result is known as the Kramers–Heisenberg cross-section for the
scattering of light by atomic electrons.

When the kinetic energy of the incoming photons is very large compared to the relevant
excitation energies of the system (En − Ei), the second and third terms in the above equation
are negligible compared to the first. Due to the particular polarization dependence this term is
called the Thomson term and the corresponding process Thomson scattering. However, when
the photon energy is of the order of some excitation energy of the system, the second term
becomes singular. Actually, the singularity is avoided by considering that the intermediate
state |φn〉 is short lived and so it has a finite lifetime 
n that should replace ε in the denominator
of (21). Nevertheless, a strong enhancement of the cross-section still results when the energy
of the incoming photon goes through an absorption edge, since usually 
n � (En − Ei). This
phenomenon is called resonance (or anomalous) scattering. For this reason, the direct term in
the Kramers–Heisenberg cross-section is often called the resonant term while the third term,
which cannot be singular, is called the non-resonant one.

Under resonance conditions, the non-resonant term in expression (21) of the cross-section,
i.e. the second dispersive term, can usually be neglected. If we consider furthermore the case
of elastic coherent scattering (corresponding to the DAFS or REXS spectroscopies), this cross-
section further simplifies as

dσ

d�
= r 2

o

∣
∣
∣
∣
ê∗

q f
· êqi fT (Q)+ 1

m

∑

n

〈φi |ê∗
q f

· pe−iq f ·r|φn〉〈φn |êqi ·peiqi ·r|φi〉
Ei − En + h̄ωqi − iε

∣
∣
∣
∣

2

(22)

since in this case |φi〉 = |φ f 〉.
It is then customary to decompose the resonant term, the only complex term remaining

as the Thomson term is real, into its real and imaginary part, noted respectively f ′(h̄ωqi ) and
f ′′(h̄ωqi ). The cross-section is then rewritten as

dσ

d�
= r 2

o

∣
∣
∣ê∗

q f
· êqi fT (Q)+ f ′(h̄ωqi )+ i f ′′(h̄ωqi )

∣
∣
∣

2

f ′(h̄ωqi ) is a dispersion correction to the Thomson amplitude fT (Q) while f ′′(h̄ω) is an
absorption correction.

Using the well known relation [25]

1

x − xo + iε
= P

(
1

x − xo

)

− iπδ(x − xo)

where the symbol P stands for Cauchy’s principal value, we obtain for the imaginary part

f ′′(h̄ωqi ) = π

m

∑

n

〈φi |ê∗
q f

·pe−iq f ·r|φn〉〈φn|êqi · peiqi ·r|φi〉δ(Ei − En + h̄ωqi ). (23)

In the dipole approximation, the factors e−iq f ·r and eiqi ·r disappear in the matrix elements.
In the case of forward scattering (q f = qi and êqi = êq f ), this expression simplifies as

f ′′(h̄ωqi ) = π

m

∑

n

∣
∣〈φn|êqi · peiqi ·r|φi〉

∣
∣
2
δ(Ei − En + h̄ω). (24)

We see clearly here that f ′′(h̄ωqi ) is proportional to the absorption cross-section (13).
f ′(h̄ωqi ) can then be obtained from f ′′(h̄ωqi ) by making use of the Kramers–Kronig relations.

2.3. Cross-section for incoming electrons

Similar processes as for photons can occur when focusing a beam of electrons on a sample. We
can have elastic scattering (as in the case of LEED), inelastic scattering (EELS for instance) or
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absorption, when one counts only the number of electrons removed from the incoming beam.
In the case of elastic scattering, the incoming electrons only interact with the sample potential
VS through an elastic process. In contrast, when they suffer energy loss within the sample, there
is an additional interaction potential, called VL , responsible for it. This is the case of EELS,
where an electron of the sample is excited via the Coulomb interaction. In this case, the total
interaction potential will be written as VI = VS + VL .

The calculation of the scattering cross-section is similar to the one we have outlined in
the previous subsection. Let us call Ho the Hamiltonian of the free electron incident onto the
sample. The eigenstates can be taken as plane wave states represented respectively by |ki 〉 and
|k f 〉 in the initial and the final state. The total Hamiltonian is then

H = Ho + VI = Ho + VS + VL .

Following (2), the cross-section can be written as

dσ

dk̂ f

= 2π

h̄ Ii

∣
∣〈k f |TI |ki〉

∣
∣
2
ρ(E f ).

Here, Ii the flux of incoming electrons and TI the transition operator related to the
interaction potential VI by an equation similar to (3).

With plane waves normalized at one state in a box of volume V , i.e.

〈r|k〉 = 1√V eik·r

the flux of incoming electrons can be shown to be [21]

Ii = 1

V
h̄ki

m
and as before the density of final states

ρ(E f ) = V
(2π)3

mk f

h̄2 .

Replacing in the expression of the cross-section above, we obtain

dσ

dk̂ f

= V2

(
m

2π h̄2

)2 k f

ki

∣
∣〈k f |TI |ki〉

∣
∣
2
.

Note that this cross-section does not depend on the normalization volume V as the prefactor
V2 will cancel with the volume terms coming from |ki〉 and |k f 〉.

If we take the standard condition of normalization to the continuum

〈k f |ki 〉 = δ(ki − k f )

then the volume V in the expression of the cross-section, and in the expression of the plane
waves, should be replaced by (2π)3. Making this replacement leads to

dσ

dk̂ f

= 4π4

(
2m

h̄2

)2 k f

ki

∣
∣〈k f |TI |ki 〉

∣
∣
2
. (25)

For elastic scattering, i.e. VL = 0, this simplifies to

dσ

dk̂ f

= 4π4

(
2m

h̄2

)2
∣
∣〈k f |TS|ki 〉

∣
∣
2

with now k f = ki = k. The term (2m/h̄2)2 can be incorporated into the square modulus so
as to express the energies in Rydberg. Remembering the continuum normalization condition
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this leads to a matrix element 〈k f |(2m/h̄2)TS|ki 〉 proportional to 1/k with dimension [L] of a
length, which is the customary normalization for T -matrix elements.

In the case of inelastic scattering we need to calculate the transition operator TI from the
knowledge of TS and TL . This problem has been addressed by many authors and can be solved
conveniently within the distorted-wave Born approximation. The basic idea in this approach is
to partition the Hamiltonian H = Ho + VS + VL into H = HS + VL with HS = Ho + VS.
HS is solved first, and then the solutions of H can be expressed in terms of the solutions of HS

using standard scattering theory. Since inelastic scattering involves at least two-particle states,
let us indicate by |φ〉 the solutions of Ho, by |�±〉 the scattering solutions of HS and by |�±〉
those of H considered as multiparticle Hamiltonians. The sign + represents an outgoing state
and the sign − an incoming one. Then, according to the result given by Bethe and Jackiw [26],
one has

〈φ f |TI |φi〉 = 〈φ f |TS|φi〉 + 〈�−
f |VL |�+

i 〉. (26)

This expression is exact. If we expand |�+
i 〉 in terms of the solutions |�+

i 〉 of HS and keep
only the first term (this amounts to identifying |�+

i 〉 with |�+
i 〉), we have the distorted wave

Born approximation (DWBA), which gives for the cross-section

dσ

dk̂ f

= 4π4

(
2m

h̄2

)2 k f

ki
|〈�−

f |VL |�+
i 〉|2. (27)

The matrix element 〈φ f |TS|φi〉 in (26) is zero because VS, which describes elastic
scattering, cannot induce transitions with energy change.

2.4. Doubly differential ionization cross-section

We consider now the case where two electrons are excited from a sample resulting from the
same ionization process and later measured by two analysers. The second electron may result
either from the decay of the core hole created by the ejection of the first electron (Auger decay)
or from a loss of this latter. Hence we only consider the case where the two electrons are excited
at a different time but with a causal relationship. Excitation by a single photon of a quasiparticle
formed by an electron pair as in one of the double photoemission processes [27–29] will not be
treated here. We shall write as VI1 and VI2 the two ionization potentials to remain as general as
possible and specialize them later according to the process investigated. Here again, we have
a multiparticle problem and therefore we will keep the notations we introduced for inelastic
scattering.

The total Hamiltonian is written as H = HS + VI1 + VI2, where HS is the sample
Hamiltonian in the absence of any ionization. The transition operator associated with this
Hamiltonian can be written exactly as

T = (VI1 + VI2)+ (VI1 + VI2)G(VI1 + VI2).

Here, G is the propagator of the full system defined as (z − H )−1. It can be expanded
in terms of the sample propagator GS = (z − HS)

−1 using Dyson’s equation. Truncating this
expansion to first order gives

T (1) = (VI1 + VI2)+ (VI1 + VI2)GS(VI1 + VI2).

This expression is still relatively general. Let us specialize it to the process we consider
now. The zeroth-order term (VI1 + VI2) vanishes, as VI1 and VI2 do not act simultaneously.
Furthermore, the first ionization precedes the second ionization process in time so that we are
left with

T (1)
DDI = VI2GSVI1.
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As before, we write the ground state of the system described by HS as |�i 〉 = |�N 〉,
with the index N indicating the number of electrons. We represent the final state by
|� f 〉 = |�N−2〉|k1〉|k2〉, with |k1〉 and |k2〉 representing the two escaping electrons. Following
equation (2), we can write the doubly differential cross-section as

d2σ

dk̂1 dk̂2

= 2π

h̄ Io

∣
∣
∣〈� f |T (1)

DDI |�i〉
∣
∣
∣

2
ρ(E f )

where Io is the flux of the incoming particle (electron, photon, . . .) that results in the ionization
of the system through VI1. ρ(E f ) is the density of final states of the detected particles.

We can introduce a sum over intermediate states |�n〉 which we will characterize later. We
choose the {|�n〉} to be eigenstates of HS of eigenenergy En , suitably normalized so that no
normalization coefficient appears in the closure relation of the basis they form. Then

d2σ

dk̂1 dk̂2

= 2π

h̄ Io

∣
∣
∣
∣
∣

∑

n

〈� f |VI2GS|�n〉〈�n |VI1|�i 〉
∣
∣
∣
∣
∣

2

ρ(E f ). (28)

As before, due to energy conservation, GS can be taken either at the energy of the initial
state Ei or at that of the final state E f . It should be noted however that this energy conservation
relation does not put constraints on the energy En of the intermediate states, since these latter
involve virtual transitions.

Furthermore,

Gs(Ei)|�n〉 = (Ei − HS)
−1|�n〉 = |�n〉

Ei − En + iε

as |�n〉 is an eigenstate of HS. We replace now into the expression (28) of the cross-section
and make use of the value (16) of the density of states of free electrons to obtain

d2σ

dk̂1 dk̂2

= 2π

h̄ Io

V2

(2π)6
m2

h̄4
k1k2

∣
∣
∣
∣
∣

∑

n

〈� f |VI2|�n〉〈�n |VI1|�i〉
Ei − En + i
n

∣
∣
∣
∣
∣

2

δ(Ei − E f ). (29)

We have added here an energy broadening to account for the fact that the intermediate state
|�n〉 is short lived, its lifetime being that of the core hole created by the effect of VI1.

3. Reduction of the many-body problem to an effective one-particle problem for
photoemission and photoabsorption

In the remainder of this article, we shall use atomic units of lengths (a0 = h̄2/me2 = 0.529 Å)
and Rydberg units of energy (1 Ryd = h̄2/(2me2a2

0) = 13.6 eV), and drop the index q from
all the wavefield quantities to simplify the notations.

In section 2.2, we have derived a general expression for the photoemission and
photoabsorption cross-sections. The two processes are closely related inasmuch as the
absorption of a photon by an atom results primarily in the ejection of a photoelectron, when
its energy is greater than the ionization potential. Indeed, the photoabsorption cross-section is
nothing more than the integration of the photoemission cross-section over all emission angles
and all the final channels (elastic plus inelastic) with the same final energy. The reason we
treat both cases together is duplex. Firstly, the mathematical formalism is the same, as is
the reduction process to an effective one-particle problem; secondly, and more importantly,
on purely physical grounds we can think of photoabsorption as a photoemission process with
the same electron source (the photoabsorber), in which the detector, instead of being outside
the sample, coincides with the source. This analogy will be apparent from the mathematical
formalism elaborated below.
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Both processes are complicated many-body problems which still challenge an exhaustive
theoretical treatment. Since we are mainly interested in their structural applications, we shall
present in this section a many-body derivation of their cross-section and illustrate the reduction
of this problem to an effective single-particle problem with complex energy-dependent optical
potential. This process of reduction will help us to understand the validity and the limits of
application of the resulting theoretical scheme as well as to choose an appropriate optical
potential.

By treating photoabsorption and photoemission together, we shall thus be able to assess the
sensitivity of a particular potential in absorption by looking at its performance in photoelectron
diffraction and vice versa.

3.1. The photoemission case

In an angular-resolved photoemission experiment, the photoelectrons of energy Ek larger than
the work function of the sample are detected along a direction k̂ determined by the user. We
can therefore infer that the differential cross-section for such a photoemission experiment will
be similar to the photoabsorption one (see subsection 2.2) but with two essential differences:

(a) no summation is required on the final states because the detector selects only the particular
states of interest;

(b) the outgoing wavefunction of the photoelectron should exhibit some specific boundary
conditions to account for the fact that no electron was present in the continuum in the
distant past.

Taking these points into account, the photoemission cross-section in the many-body case
for the ejection of a photoelectron of final momentum k and kinetic energy k2 along the
direction k̂ can be written as

dσ(ω)

dk̂
= 4π2αh̄ω

∣
∣
∣
∣
∣
〈��N

k |ê ·
n∑

i=1

ri |�N
g 〉

∣
∣
∣
∣
∣

2

(30)

where �N
k is the many-body final scattering state, normalized to one state per energy interval

unit, for the N-electron system with one electron of momentum k travelling to infinity, and
�N

g its ground state, with respective energies E N
k and E N

g . As in the previous section, h̄ω
is the incoming photon energy and ê its polarization. Energy conservation imposes that
h̄ω = E N

k − E N
g . According to Breit and Bethe [30], in order to satisfy the correct boundary

conditions for the ejected photoelectron (no electron in a continuum state in the remote past),
we must take the time-reversed scattering state by application of the time-reversal operator �.
A similar boundary condition has been implicitly imposed in the expression (27) of the inelastic
cross-section of electron scattering.

In the case of photoemission from a deep core state φc
L0

of angular momentum L0 =
(l0,m0), we assume that, to a good approximation,

�N
g (r, r1, . . . , rN−1) = (N !)1/2 Aφc

L0
(r)

∑

n

cn�
N−1
n (r1, . . . , rN−1)

= (N !)1/2 Aφc
L0
(r)�N−1

g (r1, . . . , rN−1) (31)

where A is the usual anti-symmetrization operator (A = 1/N ! ∑P (−1)P P , with A2 = A,
P being the permutation operator) and�N−1

n (r1, . . . , rN−1) are Slater determinants describing
the configurations present in the ground state of the system. Normalization imposes

∑

n |cn|2 =
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1 if 〈φc|φc〉 = 1 and for simplicity we shall omit spin variables, since we will not consider here
magnetic systems. In a similar way we can write without loss of generality

�N
f (r, r1, . . . , rN−1) = (N !)1/2 A

∑

α

φ f
α (r)�̃

N−1
α (r1, . . . , rN−1) (32)

where α labels any complete basis set and where the functions φ f
α , ignoring exchange effects,

can be thought to describe the excited photoelectron while the �̃N−1
α states are eigenstates of

the Hamiltonian H N−1 describing the remaining (N − 1)-electron system with eigenvalues
E N−1
α :

H N−1�̃N−1
α = E N−1

α �̃N−1
α . (33)

The tilde over them stands as a reminder that in the expansion (31) the relaxed states
around the core hole are dominant. If needed, they can be in turn expanded in terms of Slater
determinants describing the intervening configurations in the final state. Borrowing the term
from many-particle scattering theory, we can call the states �̃N−1

α final state channels. Here
and henceforth the lower index f in the final state �N

f can be replaced by k whenever we deal
specifically with the scattering state �N

k .
The wavefunction �N

f is an eigenstate of the total Hamiltonian H N with eigenvalue
E N

f = E N
g + h̄ω, i.e.

H N�N
f = E N

f �
N
f . (34)

Moreover,

H N = −∇2
r +

∑

i

V (r, ri)+ H N−1 (35)

where V (r, ri) is the interaction potential of the excited photoelectron with the rest of the
system.

By inserting (32) into (34), projecting onto the states �̃N−1
α and using (33), one obtains for

the amplitude functions φ f
α the set of coupled equations

(∇2 + k2
α)φ

f
α (r) =

∑

β

∫

Vαβ(r, r
′)φ f

β (r
′) dr′ (36)

where

k2
α = h̄ω − (E N−1

g − E N
g )− (E N−1

α − E N−1
g ) = h̄ω − Ic −�Eα (37)

Ic being the ionization potential for the core state and �Eα the excitation energy left behind
in the (N − 1)-particle system. The non-local interchannel potentials Vαβ(r, r′) are the matrix
elements between states �̃N−1

α and �̃N−1
β of the interaction potential V (r, ri) and include local

terms coming from the Coulomb interaction as well as non-local exchange terms originating
from the exchange interaction. The set of equations (36) is to be supplemented with the
boundary conditions related to the behaviour of the photoelectron at infinity and to the state
of the (N − 1)-electron system according to the partition of the total energy E N

f = E N
g + h̄ω

between them. To each different partition there corresponds a different set of boundary
conditions leading to a different solution of the set of (36). For example, if we are interested in
a particular photoemission channel β with kinetic energy k2

β leaving behind the energy�Eβ in
the system, in the limit r −→ +∞ we should impose the scattering conditions

φα(r; kβ) �
(

kα
16π3

) 1
2
[

eikβ ·rδαβ + fα(r̂,kβ)
eikαr

r

]

(38)

where we have made explicit the dependence of φα on kβ as an argument rather than an upper
index. Here, as usual, δαβ is the Kronecker symbol, and fα is the scattering amplitude. The
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factor
(

kα/16π3
)1/2

takes care of the normalization of the photoelectronic plane wave at the
detector to one state per Rydberg. In the case of double electron transitions with two electrons in
the continuum, equation (38) can easily be changed accordingly. For more details we refer the
reader to Natoli et al [13], where a formal solution of these equations is given in the framework
of the multichannel multiple-scattering theory. For the sake of the argument developed here,
we need only the expression for photoemission cross-section, which is obtained from (30)–(32)
as

dσ(ω)

dk̂
= 8π2αh̄ω

∑

m0

∣
∣
∣
∣
∣

∑

α

〈S∗
αφ

−
α (r; kβ)|ê · r|φc

l0m0
(r)〉

∣
∣
∣
∣
∣

2

(39)

which is valid if we orthogonalize the excited channels φ−
α to all the one-particle states

belonging to the configurations�n present in the ground state�N
g . Here we have introduced the

overlap integrals Sα = 〈�̃N−1
α |�N−1

g 〉 of the passive electrons and indicated by φ−
α the time-

reversal of φα (in practice the complex conjugate, if spin is neglected). Spin–orbit splitting
in the initial core state has been ignored, since it is not relevant for our argument, and spin
degeneracy has been taken into account by an extra factor of two.

The set of equations in (36) contains the complete description of all the outcomes of the
photoemission process, be it of intrinsic origin (i.e. consequent to the relaxation of the system
around the core hole) or extrinsic (excitations created by the photoelectron in its way out of
the system). Their complete solution is out of the question; however, one can analyse their
consequence in particular cases. Since we are mainly interested in structural analysis, both
in photoemission and photoabsorption, we need only to consider the completely relaxed or
elastic channel (i.e. the one for which �Eβ = 0), because it carries most of the weight and
is usually used for structural analysis. Indeed, as a typical value, |S0|2 = |〈�̃N−1

0 |�N−1
g 〉|2 ∼

0.8–0.9 [31]. For simplicity, we shall attribute to this channel here and in the following the
index α = 0. However, any other channel can in principle be capable of carrying structural
information, provided the photoelectron in the chosen channel remains in the same energy state
after the loss event. This is the case of the Kikuchi electrons (coming from plasmon-loss peaks)
considered by Osterwalder et al [17], who observed the same diffraction patterns from a (001)
single-crystal surface of aluminium independently from the number of losses n suffered by
the photoelectron. In this case it is reasonable to assume that in all these channels the effective
potential will be substantially the same for photoelectrons with a kinetic energy more than 1000
eV, since the plasmon oscillations involve only valence electrons and at these energies atomic
scattering is due mainly to core electrons.

With this in mind, we can then think of solving the set of coupled Schrödinger
equations (36) by eliminating all unwanted channels in favour of the elastic one. The result
is a single equation for the channel function φ0(r) with an effective complex energy-dependent
non-local optical potential of the kind

[∇2 + k2
0 − Vc(r)

]

φ0(r) =
∫

�opt(r, r′; h̄ω)φ0(r
′) dr′ (40)

where we have isolated its local Coulomb part (Vc) and indicated the energy dependence
coming from the eliminated channels by the argument h̄ω in �opt. Once this equation
is solved we can write each φα(r) in terms of φ0(r) through a relation of the type
φα(r) = ∫

Aα(r, r′; h̄ω)φ0(r
′) dr′, involving complicated inversions of the operators

[∇2 + k2
α − Vα(r, r′)

]

in (36). We can therefore write (39) as

dσ(ω)

dk̂0

= 8π2αh̄ω
∑

m0

∣
∣
∣
∣

∑

α

〈

S∗
α

∫

A−
α (r, r

′; h̄ω)φ−
0 (r

′; k0) dr′| × ê · r|φc
l0m0
(r)

〉∣
∣
∣
∣

2

(41)
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so that everything is expressed in terms of φ−
0 (r). Notice that in the summation over α the

most important term is S∗
0φ

−
0 (r), since by definition A−

0 (r, r
′; h̄ω) = δ(r − r ′). Our task

is then to solve (40) with the asymptotic boundary conditions given by (38). This can be
done in the framework of MST by transforming this integro-differential equation (40) into
a Lippman–Schwinger equation with non-local potential, following the method illustrated by
Natoli, Benfatto and Doniach [32] and Natoli et al [13]. In these papers the derivation of the MS
equations is given for local potentials, but it is clear that the same derivation is valid for non-
local potentials as well. Indeed, the essence of the method rests on the partition of the space
into Voronoi polyhedrons (equivalent to Wigner–Seitz cells for periodic systems) such that
their diameter is always smaller than the nearest distance between their centres. In each such
polyhedron a local solution�L(r) of (40) is obtained behaving like JL(r) = jl(k0r)YL (r̂) near
the origin, where jl(kr) is the usual spherical Bessel function of order l and YL(r̂) the spherical
harmonics of type L ≡ (l,m) (unless explicitly stated, we shall use throughout the paper a
real basis). These functions are used to expand locally in the i th cell the overall solution of
class C1 (continuous together with first derivatives) in the whole space, satisfying the boundary
condition (38), as

�i (ri; k0) =
∑

L

Ai
L(k0)�

i
L(ri ) (42)

provided that the amplitudes Ai
L(k0) satisfy the compatibility equations

∑

L ′
Ci

L L ′ Ai
L ′(k0) = A0

L(k0)−
∑

j,L ′,L ′′
(1 − δi j)G

i j
L L ′ Si

L ′ L ′′ A
j
L ′′(k0) (43)

where

A0
L(k0) = YL(k̂0)e

ik0·Ri0 (k0/π)
1/2 (44)

is the exciting amplitude originating from the plane wave in (38). A derivation is provided in
appendix A for the convenience of the reader. Here Ci

L L ′ and Si
L L ′ are surface integrals over the

surface Si of the i th cell given by

Ci
L L ′ =

∫

Si

[

H̃ +
L (r)∇�i

L ′(r)−�i
L ′(r)∇H̃ +

L (r)
]

· ni dσi (45)

Si
L L ′ =

∫

Si

[

J +
L (r)∇�i

L ′(r)−�i
L ′(r)∇J +

L (r)
]

· ni dσi (46)

and Gi j
L L ′ are the KKR structure factors having the well known expression

Gi j
L L ′ = 4π

∑

L ′′
il−l′+l′′ C L ′′

L L ′ H̃ +
L ′′(Ri j) (47)

where H̃ +
L (r) = −ikh+

l (k0r)YL(r̂), h+
l being the Hankel function with outgoing spherical

wave behaviour, Ri j = Ri − R j is the vector connecting the origins of the two cells centred at
Ri and R j , and Rio = Ri − Ro connects site i with the origin of the coordinates o, assumed
to coincide with the photoabsorber. The quantities C L ′′

L L ′ = ∫

YL (r̂)YL ′(r̂)Y ∗
L ′′(r̂) are known as

Gaunt coefficients. In order to be able to use the physical language of MST we introduce the
quantities

Bi
L(k0) =

∑

L ′
Si

L L ′ Ai
L ′(k0) (48)

and define the suitably normalized local basis solutions �̃i
L = ∑

L ′ �i
L ′(Si )−1

L L ′ , so that

�i (ri; k0) =
∑

L

�̃i
L(ri )B

i
L(k0). (49)
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The coefficients Bi
L(k0) are easily seen to satisfy the MS equations

∑

L ′
(T i )−1

L L ′ Bi
L ′(k0) = A0

L(k0)−
∑

j,L ′
(1 − δi j)G

i j
L L ′ B

j
L ′(k0) (50)

where we have formally introduced the quantity T i
L L ′ = ∑

L ′′ Si
L L ′′(Ci )−1

L ′′ L ′ . Under certain
conditions or in the case of cells with spherical shape it can be shown [13] that T i

L L ′ is the
scattering matrix of the non-spherical potential located inside the i th cell and Bi

L(k0) is a total
scattering amplitude impinging on it in response to a plane wave excitation of momentum k0.
Indeed, (50) are nothing else but the self-consistent equations for these amplitudes. We shall
assume in the following that this is the case, in order to make the discussion more physical.
Otherwise, it is easy to pass from this representation to the other. For convenience we define
the cell T -matrix Tc = [T i

L L ′δi j ] and the matrix G = [(1 − δi j)G
i j
L L ′ ] of the free spherical wave

propagator. Then (50) are easily solved for the amplitudes Bi
L(k0) to give

Bi
L(k0) =

(
k0

π

) 1
2 ∑

j,L ′
τ

i j
L L ′ il

′
YL ′(k̂0)e

ik0·R j 0 (51)

where we have introduced the inverse τ of the MS matrix

τ
i j
L L ′ = [

(T −1
c + G)−1

]i j

L L ′ (52)

known as the full scattering path operator, giving the total amplitude of propagation from site i
to site j , starting with angular momentum L and arriving with angular momentum L ′. We now
have all the ingredients to calculate the photoemission cross-section. Introducing the energy-
dependent matrix element for the creation of the photoelectron

Mc
L0 L(h̄ω) =

∑

α

〈

S∗
α

∫

A−
α (r, r

′; h̄ω)�̃−
L (r

′) dr′|ê · r|φc
L0

〉

(53)

we easily find that our quantity of interest takes the simple form

dσ(ω)

dk̂0

= 8π2αh̄ω
∑

m0

∣
∣
∣
∣
∣

∑

L

Mc
L0 L(h̄ω)B

o
L(k0)

∣
∣
∣
∣
∣

2

. (54)

Remembering (51), we then see that the photoemission current along direction k̂0 is the
square modulus of the sum of all possible composite amplitudes obtained as products of an
amplitude Mc

L0 L for exciting a core electron at site o (the origin) with angular momentum

L, times the amplitude of propagation τ oj
L L ′ from this site to any other site (cell) j with final

angular momentum L ′, times the amplitude YL ′(k̂0) for emission along k̂0, times the phase
factor eik0·R j 0 that takes into account the phase relation of the electronic wave between sites
o and j . It is therefore the result of a complicated interference process with heavy demand
on the reliability of the optical potential. The expression (54) has constituted the basis for
the interpretation of photoelectron diffraction data at low photoelectron kinetic energies with
good success [33]. A computer program in the MT approximation is also available [34] and
currently used [35]. The emitted current depends on three variables, the photon energy and
the two angles of the direction k̂0. Therefore, as anticipated at the beginning of this section,
by fixing the energy one can test the performance of a particular model optical potential in
reproducing polar and azimuthal diffraction scans.

Before finishing this section, we want to quote an interesting relation connecting the square
modulus of the scattering amplitude Bo

L(k0) with the imaginary part of the scattering path
operator τ oo

L L . More generally, in the case of a real potential one can show [32] that as a
consequence of the MS equations (50) the following relation holds:

∫

dk̂0
[

Bi
L(k0)

]∗
B j

L ′(k0) = − 1

π
Im

[

τ
i j
L L ′

]

. (55)
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This relation is a consequence of the conservation of the particle flux and is not valid in the case
of losses (complex potential). It can be used to connect the integrated photoemission cross-
section with the photoabsorption cross-section derived from the Green’s function expression.
Indeed, indicating by ML0 L(h̄ω) the atomic transition matrix element in the case of a single
channel and real potential, from expression (54) we obtain

∫

dk̂0
dσ(ω)

dk̂0

= −8παh̄ω
∑

m0

∑

L L ′
ML0 L(h̄ω) Im

[

τ oo
L L ′

]

ML0 L ′(h̄ω) (56)

which is identical to the photoabsorption cross-section derived below.

3.2. The photoabsorption case

Turning now to absorption, we need to integrate (39) over k̂ and sum over all final channels
with the same total energy Etot = h̄ω+ Eg. To this purpose it is expedient to make explicit the
energy conservation condition and label the final state with f . By defining the Green’s function
matrix with outgoing wave boundary conditions

G+
αα′ =

∑

f

φ
f
α (r)φ

f
α′(r′)∗

E −�E f − k2
f + iε

the photoabsorption cross-section is easily seen to be

σabs(ω) = −8παh̄ω Im
∑

m0

[∫ ∫

drφc
L0
(r)ê · r

×
∑

α,α′
S∗
αSα′ G+

αα′(r, r
′; h̄ω − Ic)ê · r′φc

L0
(r′) dr′

]

(57)

which is the same expression we would have obtained starting from (30), (31) and (32). In
appendix C-4 of Natoli et al [13] it is shown that this matrix satisfies the set of coupled
equations, writing E for h̄ω − Ic ,

(∇2 + k2
α)G

+
αβ(r, r

′; E)−
∑

γ

∫

Vαγ (r, r
′′)G+

γβ(r
′′, r′; E) dr′′ = δαβδ(r − r′).

Following the same steps as in the photoemission case, the elimination of all channels in
favour of the relaxed one (α = 0) leads to the following expression:
∑

α,α′
S∗
αSα′ G+

αα′ (r, r
′; E)

=
∑

α,α′
S∗
αSα′

∫ ∫

A∗
α(r,x; E)G+

00(x,x
′; E)Aα′(x′, r′; E) dx dx′ (58)

where the non-local operator Aα(r, r′; E) is the same as before and G00 obeys the analogous
equation corresponding to (40) with the same optical potential

[∇2 + k2
0 − Vc(r)]G+

00(r, r
′; E)−

∫

�opt(r,x; E)G+
00(x, r

′; E) dx = δ(r − r′). (59)

The solution to this equation within MST, for r in cell i and r′ in cell j , can be written
as [81]

G+
00(r, r

′; E) =
∑

L ,L ′
�̃L(r)

(

τ
i j
L L ′ − δi j T

i
L L ′

)

�̃L ′(r′)+ δi j

∑

L ,L ′
�̃L(r<)T

i
L L ′�̃

+
L ′(r>) (60)

with the same meaning of the symbols already introduced and remembering that the functions
�̃L(r) do not carry the normalization to one state per Rydberg. The second term on the rhs
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is the singular part of the Green’s function, r<(r>) is the lesser (greater) of r, r′ and �̃+
L ′(r)

that solution of (59) inside cell i irregular at the origin that matches smoothly to H̃ +
L (r) at the

boundary. Making the reasonable assumption that the range of the functions Aα(r, r′; E) is of
the order of the atomic dimensions (this is obviously true for A0) and using (58), (60) in the
expression (57), we finally obtain for the photoabsorption cross-section

σabs(ω) = −8παh̄ω Im
∑

m0

Mc∗
L0 L (ω)

(

τ oo
L L ′ − T o

L L ′
)

Mc
L0 L ′(ω)+ σat(ω) (61)

due to the localization of the core initial state, with Mc
L0 L given by (53) and defining an atomic

absorption given by

σat(ω) = −8παh̄ω Im
∑

m0

∫ ∫

drφc
L0
(r)ê · rM(r, r′;ω)ê · r′φc

L0
(r′) dr′ (62)

where

M(r, r′;ω) =
∑

α,α′
S∗
αSα′

∑

L ,L ′

∫ ∫

A∗
α(r,x;ω)�̃L(x<)T

o
L L ′�̃L ′(x>)Aα′(x′, r′;ω) dx dx′.

(63)

Equation (61) is the final expression we wanted to arrive at. It is valid under quite general
conditions, as apparent from our derivation, and shows the natural partition into an atomic
contribution and a MS one. By removing all cells of the cluster except the one containing
the photo-absorber, τ oo

L L ′ reduces to T o
L L ′ so that the MS contribution is zero. Even though in

a multi-atom system one cannot define precisely an atomic entity, we shall continue to use
the term atom as a useful reminder for the central cell and because it is after all a reasonable
approximation to the isolated atom. The fact that the second site index is equal to the first
means that electron source and detector coincide, as already anticipated. Indeed equation (61)
tells us that the structural part of the photoabsorption cross-section σstr(ω) is proportional to
the imaginary part of the product of the amplitude M for emitting the photoelectron, times the
full scattering amplitude of propagation τ from the photoemitter site and back, times another
amplitude M for detecting it.

Since the escape direction of the photoelectron has been integrated out, the only variable
left is the energy and we can only test energy-dependent diffraction patterns. Compared to
photoelectron diffraction, this means that these patterns might be distorted by the energy
dependence of the matrix elements necessary to create and detect the photoelectron at the
absorption site. However in all those cases where this dependence turns out to be smooth, we
can hope to recover the structural information we are interested in. This condition requires that
one can neglect electronic correlations in the final state and that only one configuration (Slater
determinant) is predominant in the expansion (31). This happens with good approximation in
the K-edge spectra of many materials where the final photoelectron states, being of p symmetry
around the photoabsorber, are usually sufficiently delocalized not to suffer correlation effects
with the electrons of the system. For example, this is the case of transition metal ions of the
first series in the periodic table in many compounds and in particular in materials of biological
interest. Moreover very often the spin-restricted (unrestricted) Hartree–Fock approximation
for the initial state provides a reasonably good description to the ground state for closed (open)
shell configurations. Only in special cases do we have examples of configuration mixing in the
ground state, as in the case of Cu2+ ion in the La2CuO4 compound [36] or valence fluctuating
compounds. In such instances a better strategy is to solve the multichannel equations for the
configurations that enter in the ground state, eliminating all the other channels by expressing
them as a function of the configurations of interest. This approach is currently in progress [37].
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As we saw in section 3.1, the predominance of one configuration implies to a reasonable
approximation that we can make the ansatz of locality and neglect the spatial dependence of
Aα(r−r′; h̄ω). Therefore, using the same kind of derivation as that of equation (80), we obtain
for (58)

∑

α,α′
S∗
αSα′ G+

αα′ (r, r
′; E) = |S0(ω)|2G+

00(r, r
′; E). (64)

This equation, together with (57), tells us that the effect of the eliminated channels results
in a shape function |S0(ω)|2 that modulates the absorption coefficient originating from the
primary channel

σabs(ω) = |S0(ω)|2σ 0
abs(ω). (65)

The expression for σ 0
abs(ω) is easily obtained by observing that in the same approximation

(63) gives

M(r, r′;ω) = |S0(ω)|2
∑

L ,L ′
�̃L(r<)T

o
L L ′�̃L ′(r>) = |S0(ω)|2M̃(r, r′;ω) (66)

whereas (53) becomes, dropping h̄,

Mc
L0 L(ω) = 〈�̄L (r)|ê · r|φc

L0
(r)〉

∑

α

SαAα(ω) = M̃c
L0 L(ω)

∑

α

SαAα(ω) (67)

so that insertion in (61) and (62) provides the wanted result, simply by replacing the transition
matrix elements M with M̃ .

σ 0
abs(ω) = −8παh̄ωIm

∑

m0,L ,L ′
M̃c∗

L0 L(ω)
(

τ oo
L L ′ − T o

L L ′
)

M̃c
L0 L ′(ω)+ σ 0

at(ω)

= σ 0
str(ω)+ σ 0

at(ω). (68)

Even with these approximations the first principle calculation of |S0(ω)|2 is not an easy
task. The most noticeable effect is provided by double electron transitions (that are included
in our scheme), since they show up as a change of slope in the atomic background component
of the cross-section [38], occurring at definite energies that depend on the photoabsorber. An
analytical or numerical modelling of these effects would be highly desirable, although for our
purposes it is sufficient to know that such kinks can be factorized into this shape function.

Before proceeding, we notice that in the case of real potential the terms proportional to
the Kronecker symbol δi j in equation (60) differ by a real quantity [47], so that the absorption
cross-section reduces to expression (56). In this case the atomic absorption σ 0

at(ω) can also be
written as

σ 0
at(ω) = −8παh̄ω Im

∑

m0,L ,L ′
M̃c∗

L0 L(ω)T
0
L L ′ M̃c

L0 L ′(ω). (69)

At this point we are left with the problem of determining the nature of the optical
potential �opt(r, r′; E) in (59). This potential contains both the effect of the intrinsic channels
(excitations induced in the system by the sudden creation of the core hole) and of the extrinsic
channels (excitations created by the photoelectron in its way out of the system). Model
systems to describe both types of processes and their interference have been studied by some
authors [40, 41]. However, a practical scheme for realistic calculations has not been devised
yet. The only optical potentials currently in use are those based on the Dyson self-energy of
the photoelectron propagation in the system. This clearly accounts only for the extrinsic losses.
Depending on the systems, various reasonable approximations have been devised.

It is well known, for example, that for metals we can obtain very good agreement with
the observed absorption spectra by using a one-particle approach with an X–α potential and
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convoluting the calculated spectrum with a Lorentzian broadening function, which has an
energy-dependent width related to the mean free path of the photoelectron in the system by
the relation [42, 43]


(E) = h̄

λ(E)

(
2E

m

) 1
2

where 
(E) is the full width at half maximum. Here conventional units are used.
In the framework of the above multi-channel approach this finding can be rationalized by

observing that in a metal the completely relaxed channel together with the plasmon excitation
channels (whether intrinsic or extrinsic) almost completely exhaust the sum rule

∑

α

|Sα|2 =
∑

α

〈�N−1
g |�̃N−1

α 〉〈�̃N−1
α |�N−1

g 〉 = 〈�N−1
g |�N−1

g 〉 = 1

which holds because of the completeness of the intermediate relaxed states �̃N−1
α . Indeed, the

intensity of the double-electron excitation channels is of the order of 10−2–10−3 times that of
the main relaxed channel [39]. Therefore, an optical potential given by VX−α + i
(E) is able
to give a satisfactory picture of the absorption process for metals. The only discrepancy with
experiments lies in the calculated absorption maxima falling short of the observed ones due to
the energy independence of the X–α exchange.

A better approximation is provided by the Hedin–Lundqvist (H–L) potential [6, 7], owing
to its energy-dependent exchange and its imaginary part that is able to reproduce rather
accurately the observed mean free path in metals [44]. This is the self-energy, based on the
GW approximation, of an electron propagating in a homogeneous interacting electron gas,
calculated at the local density of the system under study. Although initially devised to describe
exchange and correlation corrections to the Coulomb potential due to the valence charge, Lee
and Beni [45] have extended its validity in the atomic core region as well.

By neglecting the effect of the intrinsic processes, one can indeed approximate
�opt(r, r′; E) as the Dyson self-energy of the photoelectron in the final state. This
approximation is consistent with the physical picture of the photoabsorption process, in which
we add an electron to the ground state of the (Z + 1)-equivalent atom. From this point of view
G00(r, r

′; E) describes the propagation amplitude of the excited photoelectron from point r
to point r′. This is the probability amplitude that the added electron remains in the same
original state in which it was added to the system. Its imaginary part gives the total probability
amplitude for scattering out of this initial state. In this scheme the self-energy �D(r, r

′; E)
acts as a complex optical potential that describes the reduction of the wavefunction amplitude
of the elastic channel, due to the transitions to all the other channels. The localization of
the initial core state has the consequence that the optical paths of the photoelectron in the
final state begin and end at the photoabsorbing site. We expect that neglecting the effects of
the intrinsic processes on �opt(r, r′; E) is a reasonably good approximation, since their main
effect is already incorporated in the shape function |S0(ω)|2.

One can therefore interpret the H–L potential as an effective optical potential that controls
the propagation and damping of the excited photoelectron everywhere in the system. In
this approach it can be viewed as a local density approximation to the self-energy of the
photoelectron in real systems. Nowadays it is the potential most widely used in the calculation
of the absorption and photoelectron diffraction cross-sections of many systems, ranging from
metals and semiconductors to ionic and covalent systems with varied success.

Finally, Fujikawa et al [8] have improved on the H–L potential by restricting its validity
to the valence charge, as originally devised. They relied on the GW approximation for the
photoelectron self-energy �GW = GW in the solid, where W = ε−1V , V is the bare
Coulomb interaction and ε = 1 − V P is the dielectric response function of the system, and
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split both the polarization propagator P = Pv + Pc and the one-electron Green’s function
G = Gv + Gc into core and valence parts. Since the core polarization was assumed to
be much smaller than the valence polarization, they obtain an expansion in powers of Pc

for �GW = GvW v + V c
ex + GvW vPcW v + · · ·. Here GvW v is the self-energy for the

valence electrons, which, when calculated via the plasmon-pole approximation for the dielectric
function, is equivalent to the H–L potential, V c

ex = GcV is the bare Hartree–Fock exchange and
GvW vPcW v is the screened polarization potential for the ion cores. Details of this latter are
given in appendix C of [1]. Preliminary calculations for a photoelectron with kinetic energy
greater than about 100 eV show that this non-local potential gives the same scattering amplitude
as the total H–L potential at large scattering angles, whereas it provides a better description of
the small-angle scattering. More work is however needed to establish its performance at low
photoelectron energies.

Once the optical potential has been specified, one can proceed to the calculation of the
key ingredients in (68), namely the cell functions �̃L(r) and �̃+

L (r) in the absorbing sphere,
needed to calculate the atomic absorption σ 0

at(ω) and the transition matrix elements M̃ creating
the photoelectron, and the scattering path operator τ i j

L L ′ = [(T −1
c + G)−1]i j

L L ′ . The inversion of
the MS matrix (T −1

c + G) becomes time consuming at energies greater than about 50–150 eV,
depending on the number of cells in the cluster. Fortunately, in the majority of cases, above
∼50 eV one can invert the MS matrix by series expansion

τ = (T −1
c + G)−1 = (I + TcG)−1Tc

=
∑

n

(−1)n(TcG)nTc =
∑

n

(−1)nTc(GTc)
n (70)

so that the total absorption is seen to be made up of an atomic smooth contribution plus an
infinite series of oscillatory signals [46, 47]. This observation has been the basis for the
development of computer codes for analysing the EXAFS signal and based on the empirical
extraction of a structural signal from the experimental data to compare with the theoretical
signal (GNXAS [2, 3], FEFF [5] and EXCURVE [4] packages).

A major ingredient in the extraction procedure is the definition of a background atomic
absorption coefficient µat(ω) such that the structural signal is defined as

χ(ω) = µ(ω)− µat(ω)

µat(ω)
.

By identifying µat(ω) with σat(ω) (ignoring the usual proportionality factor Nρ/A, where
N is the Avogadro number) one is led by (68) to the identification

χ(ω) = σ 0
str(ω)

σ 0
at(ω)

. (71)

In this formula the shape function |S0(ω)|2 seems to have dropped out from the ratio.
However, this is a consequence of the identification of µat(ω) with σat(ω), which is only
approximate due to the empirical definition of µat(ω), that does not take into account the exact
form of |S0(ω)|2. The nearer is µat(ω) to σat(ω), the more exact is the independence of χ(ω)
from the shape function. This is the reason why in many instances of EXAFS analysis |S0(ω)|2
seems to be constant and very near to unity. Also notice that the atomic absorption σ 0

at(ω)

does not factorize from the structural signal σ 0
str(ω). Indeed, only if the optical potential is

real is the structural signal proportional to the atomic absorption, which in this case takes the
form (69). However, due to the presence of inelastic processes, the potential is complex and
this different behaviour of σ 0

at(ω) and σ 0
str(ω) should be taken into account in a refined treatment

of the experimental data.
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Therefore, in order to extract structural and electronic information on the system under
study, rather than relying on an empirical definition of µat(ω), which becomes more and more
difficult to define in the XANES part of the absorption spectrum, one should naturally try to
fit the entire experimental spectrum, all the more since the relevant information is confined
in the first 100–150 eV from the edge and consequently well within the energy range where
a complete inversion of the MS matrix is possible for a wide variety of systems. Indeed,
from the photoelectron diffraction studies one already knows that the coherent diffraction
process carrying the structural information is well described by an optical potential of the H–L
type [48, 33]. Regarding the matrix elements for the creation of the photoelectron and its energy
dependence, past and present experience indicate that the smoothing action of the complex
part of the potential helps us in reproducing the correct behaviour. Remaining discrepancies
can be rather easily absorbed into a redefinition of this complex part. Even the effect of the
shape function |S0(ω)|2 on the absorption spectrum, under the assumptions described above,
can be mimicked via an additional damping. These statements have been substantiated by the
applications of the method to particular systems [49].

3.3. The mean free path

In this section we shall show explicitly that the mathematical structure of the theory, in both
spectroscopies, contains the intuitive picture of the photoelectron damping in the expected
way, by making contact with existing expressions for the mean free path λ. Since the optical
potential is complex, one expects that the coherent part of the propagation, which only carries
the structural information, be attenuated by a damping factor related to the mean free path of
the photoelectron in the system, whereas incoherent terms should appear describing the effects
of scattering out of the coherent channel due to the presence of inelastic processes, described
by the complex part of the potential.

Indeed, we shall find out how the incoherent terms due to the presence of inelastic
processes find their place into the theory and, as a by-product, how we can mimic their effects
when we ignore the details of their manifestation.

For sake of illustration we shall assume that the MS series for τ in (70) converges and
that the optical potential is local and of the muffin-tin form. The general n th term of the
series, dropping one factor T o

c that factorizes into the amplitude for emitting and detecting the
photoelectron, has the form

[

(TcG)n
]o f

L L ′ =
∑

i, j,...,k

∑

L1,L2,...,Ln

to
l Goi

L L1
t i
l1 Gi j

L1 L2
t j
l2

· · · Gk f
Ln L ′ (72)

where t i
l = k−1eiδi

l sin δi
l is the atomic scattering matrix for the atom at site i and angular

momentum l in terms of the corresponding phase shift δi
l and Gi j

L L ′ the spherical wave
propagators already introduced in appendix A. Without loss of generality, for simplicity we
shall consider in (72) a closed path with three sites o, i and j , so that j = k, f = o and
Ln = L2. The extension of the argument to the most general case will then be straightforward.

Since the potential is complex, the generic atomic phase shift δ is also complex so that we
can write δ = δ1 + iδ2. Therefore,

kt = eiδ sin δ

= e−2δ2 eiδ1 sin δ1 + i
1 − e−2δ2

2
(73)

which reduces to the known expression with real δ in the limit δ2 −→ 0. In an electron–
atom scattering process with complex potential [50] it is known that, within a factor k−2,
Im[kt] represents the total scattering cross-section (elastic plus inelastic), whereas |kt|2 gives
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the elastic cross-section (without energy loss for the impinging electron). On the basis of the
definition (73) the relation

Im[kt] = |kt|2 + 1 − e−4δ2

4

holds, so that (1 − e−4δ2)/4 is the inelastic cross-section. For convenience we shall work
henceforth in terms of the dimensionless quantity kt , since the propagator G in (72) is
proportional to k, the photoelectron momentum.

From (73) it is clear that the coherent signal is obtained by choosing for all the kt factors
appearing in (72) the term e−2δ2 eiδ1 sin δ1. All the other terms containing at least one factor
i(1 − e−2δ2)/2 describe inelastic processes with loss of coherence for the photoelectronic wave.
Indeed we have (1 − e−2δ2)/2 � (1 − e−4δ2)/4 � δ2 for sufficiently small δ2, which is usually
the case.

Concerning the coherent signal of interest, we see that it has the same form and value as
the structural signal obtained for a real potential, except for a damping factor coming from
each kt and each propagator G. To proceed further we need to find an expression for this
latter. Again for illustrative purposes we shall work in the so-called plane wave approximation
(PWA), but it can be shown that all the following considerations are valid even when spherical
wave corrections for the photoelectron propagating wave are taken into account. In the PWA
we can write [32]

Gi j
L L ′ � eiκ I Ri j

κ I Ri j
YL (R̂i j)YL ′(R̂i j)

where Ri j is the distance between sites i and j , and κ I = [E − VI ]1/2 = κ I
1 + iκ I

2 is the
photoelectron momentum in the interstitial region, where the potential VI is constant and can
be complex.

Calling Ri the sphere radius of the potential at site i , it is easily seen that in the case of the
three sites o, i and j the damping is represented by an exponential factor with exponent

−2δo
2 − κ I

2 Roi − 2δi
2 − κ I

2 Ri j − 2δ j
2 − κ I

2 R jo. (74)

We now need an expression for the phase shift δi , which in the WKB approximation is
given by [51]

δi =
∫ Ri

0
[E − Vi(r)] 1

2 dr − κ I Ri (75)

where the potential Vi(r) inside the sphere Ri is assumed to be complex. Notice that, in keeping
with the plane wave approximation for the propagator G, we have dropped the centrifugal
term in the WKB expression, so that in this case the phase shifts are independent of the
angular momentum l. However, as already emphasized, the argument remains valid even when
spherical wave corrections are taken into account.

Considering now that in the path going from site o, the photoabsorbing site, to site i and
j and back to o, each atom is traversed for a length 2R, if R is the radius of the corresponding
sphere, writing Rpath = Roi + Ri j + R jo for the total length of the path we see that the damping
factor is given by exp(−κ2 Rtot), where

κ2 = R−1
path Im

∫

path
[E − V (r)] 1

2 dr (76)

since in the interstitial region V (r) ≡ VI and e.g. inside sphere j , V (r) ≡ Vj (r). This is
exactly the same expression we would have obtained had we studied the propagation of an



Topical Review R199

electronic wave in the potential V (r), by solving the problem in the WKB approximation. The
mean free path is accordingly given by

λ = (2κ2)
−1 (77)

consistent with the fact that exp(−κ2 Rtot) is an attenuation factor for an amplitude of
propagation. This finding substantiates what was anticipated in the introduction, namely that
in absorption spectra only atoms within a sphere centred on the emitter with radius equal to
the mean free path contribute to the absorption structure, since the cross-section is given by
the imaginary part of a scattering amplitude and only closed paths are possible. In contrast,
in PED, AED and, as we shall see, LEED/MEED this radius equals twice the mean free path,
since the cross-section is proportional to the square of a scattering amplitude with interference
between different contributions (direct atomic versus propagation processes).

Starting from equation (76), a further simplification is achieved if we take into account that
everywhere in the system E − V1(r) 
 V2(r), V1(r) and V2(r) being the real and imaginary
parts of the potential. Then, expanding the square root in (76) as

[E − V (r)] 1
2 � [E − V1(r)] 1

2 + i

2
V2(r)[E − V1(r)] 1

2

we obtain

κ2 = 2R−1
path

∫

path
V2(r)[E − V1(r)] 1

2 dr � (2k Rpath)
−1

∫

path
V2(r) dr

remembering that k = E1/2. Therefore, from (77) we finally get in atomic units

λ(au) = k(au−1)

�̄2(Ryd)
(78)

defining �̄2 = R−1
path

∫

path V2(r) dr , since V2(r) is actually a self-energy. This expression is the
same as that given by Penn [44], who has in conventional units

λ = h̄2k2

2mk�̄2
= Ek

k�̄2

taking into account that Ek = k2 (Ryd), with the only difference that �̄2 is defined as a volume
average of the imaginary part of the H–L self-energy instead of a line average as here.

From the above discussion we see that what actually determines the photoelectron damping
is a line average of the various MS paths. If the system is homogeneous enough this average will
not sensibly depend on the path, so that we can ignore in practice the position dependence of the
self-energy and replace it by a function of only the energy of the photoelectron: E = h̄ω − Ic.
Since the cross section is analytical in the energy E , neglecting the cut at the Fermi energy,
we can approximately take into account the effect of the absorptive part of the potential on the
cross-section σ r

abs(E), calculated with the real part of the potential, by performing the following
convolution:

σ r
abs(E) = π−1

∫ ∞

εF

�̄2(E
′)σ r

abs(E
′)

[

(E − E ′)2 + �̄2
2(E

′)
]−1

dE ′

� σ r
abs[E − i�̄2(E)]

which holds if we are away from the edge, so that we can extend the integral to −∞ and
provided �̄2(E) does not vary too rapidly with E . Explicit calculations via both methods
substantiate this statement.

From this point of view, the effect of the core-hole lifetime can be easily incorporated in
the theory by adding 
h/2 to �̄2(E), where 
h is the full width at half maximum of the core
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hole and related to its lifetime by the relation τ = h̄/
h . We assume here an exponential decay
of the core hole, which is true in the vast majority of the cases of our interest. To estimate the
effect of this added damping on the mean free path one has simply to evaluate equation (78) by
replacing �̄2(E) with 
h/2 + �̄2(E), so that

λtot = Ek

k(�̄2 + 
h/2)
−→ λ−1

tot = �̄2

k
+ 
h

2k
= λ−1

in + λ−1
h (79)

with obvious meaning for λin (inelastic mean free path) and λh (mean free path corresponding
to the finite lifetime of the core hole).

In the H–L approximation for the self-energy, at energies lower than the plasmon energy
the mean free path would be infinite if it were not limited by the core-hole lifetime. This is due
to the plasmon pole approximation that we have retained in the expression for the dielectric
function of�h (see appendix B of [1]). Damping originating from channels other than plasmon
excitations (creation of electron–hole pairs) cannot be calculated in this approximation. These
latter have however been evaluated [6] and found negligible compared to the core-hole lifetime
and the experimental resolution. They can be introduced back in using the formula given
by Quinn and Ferrell [52], as implemented in the FEFF code [5]. After the photoelectron
reaches the plasmon energy, it interacts with the electron gas by creating plasmon excitations
and suffering a reduction in the coherent wavefunction amplitude. This fact would entail a
rather sharp decrease in the photoelectron mean free path, which should show up as a localized
feature in photoabsorption spectra. In reality, the setting in of the plasmon damping is not
so sharp due to the quantum interference between intrinsic and extrinsic losses at the plasmon
edge [40, 41]. Therefore, we introduce an empirical modelling of this fact in our fitting analysis
that takes into account both this smooth opening of the plasmon loss channel and the effect of
the electron–hole excitations.

4. Probe electron detected

As we have seen previously in the case of photoabsorption and photoemission (see sections 3.1
and 3.2), whether the photoelectron is detected or not changes the expression of the cross-
section. Indeed, in the latter case, a sum has to be made on all the possible final states due to
the probe electron not being detected. We will therefore make the distinction between the two
cases now, and focus in the present section on the spectroscopies involving the detection of the
probe electron.

4.1. Core level photoelectron diffraction

Photoelectron diffraction is just a particular case of photoemission. It consists in monitoring
a photoemission feature corresponding to a particular excitation channel (usually a core level
peak but it can be any other structure) as a function either of the energy of the photoelectron or
its escape direction (polar and azimuthal angles). Therefore, the case of core level photelectron
diffraction is described by expression (54) of the differential cross-section.

We shall now consider the case where we can neglect electronic correlations in the
final state and where only one configuration, i.e. one Slater determinant, is predominant in
the expansion (31) of the ground state wavefunction. The predominance of one particular
configuration implies that the spectral shape of the excited channels is rather featureless
and similar to the ground state, since most of them consist in particle-hole or plasmon-like
excitations which do not change drastically the ground state potential. This means that to
a reasonable approximation we can put Aα(r, r′; h̄ω) = Aα(h̄ω)δ(r − r′). Inserting this
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approximation in (53) leads to

Mc
L0 L(h̄ω) = 〈�̃L(r)|ê · r|φc

L0
(r)〉

∑

α

SαAα(h̄ω)

= M̃c
L0 L (h̄ω)

∑

α

SαAα(h̄ω). (80)

Writing | ∑α SαAα(ω)|2 = |S0(ω)|2 due to the fact that |S0|2 is the preponderant term of
the series (by definition A0(ω) = 1), we obtain for the cross-section

dσ

dk̂0

= 8π2αh̄ω |S0(h̄ω)|2
∑

m0

∣
∣
∣
∣
∣

∑

L

M̃c
L0 L(h̄ω)B

o
L(k0)

∣
∣
∣
∣
∣

2

. (81)

The prefactor |Sα(h̄ω)|2 in the previous equation (we resume for the moment the general
channel index as similar expressions as (81) can be worked out for the other non-elastic
channels α �= 0) gives the fraction of photoelectrons that go in the particular channel under
consideration. Its h̄ω dependence describes the effect of the opening of the various channels
and in the limit h̄ω → ∞ it equals the asymptotic value Sα of the sudden approximation.

Using definition (51) of the amplitudes Bo
L(k0), the cross-section for core photoelectron

diffraction in the elastic channel α = 0 can be written as

dσ

dk̂0

= 8π2αh̄ω
k0

π
|S0(h̄ω)|2

∑

m0

∣
∣
∣
∣
∣

∑

j

∑

L ,L ′
M̃c

L0 L(h̄ω)τ
oj
L L ′ il

′
YL ′(k̂0)e

ik0·R j o

∣
∣
∣
∣
∣

2

. (82)

Use of such an expression is particularly rewarding as it permits us to realistically calculate
photoemission intensity at low kinetic emission energy. This spectroscopy allows us, in a
peculiar way, to keep track of the individual single emitters on the surface with respect to
other atomic emitters in the bulk due to their core level energy shifts [53]. At this energy the
photoelectron current in semiconductors and insulators shows high angular anisotropy [54, 55],
which greatly increases the sensitivity of photoemission to the very first atomic layers. A
variety of physical effects related to the structural origin of the core levels are disclosed by
PED experiments: namely core level shifts due to initial versus final state electronic effects,
chemical reactions (heterogrowth for instance) versus structural phase transitions, adsorption
mechanisms and vibronic coupling in small chemisorbed molecules. The first example of such
a study of a core level shift analysis on Si [56] was the high anisotropy PED data measured on
the single-domain Si(001)-2 × 1 surface, which was mainly due to the static (i.e. not flipping)
nature of the buckled Si dimers (in marked contrast with more or less recent assertions about
the average symmetric configuration due to a rapidly flipping Si dimer, claimed to explain
controversial microscopy and photoemission data). Another important study which is still
far from being complete is the origin of the core level shifts in semiconductors, where a
competition between initial state effects (due to static screening) and final state effects (due
to dynamical screening) adds significant insight into the many-body theory of the shift.

In the case of the Ge(001) surface (figure 1) this kind of study has led to a picture of the
Ge surface somewhat less affected by screening effects than expected from the ab initio theory.
Finally, we have recently adapted the method to the study of adsorption geometry of cyclic
molecules on Si surfaces. Organic chemistry on surfaces is still an open field of investigation
that can have a great impulse from techniques like photoelectron diffraction. The geometry
of small cyclic molecules on the Si surface, used to functionalize the Si surface for further
chemical manipulations, has been investigated on the basis of a large data set of angle resolved
measurements [57] of the photoemission intensity on the basis of equation (82) and suitable
analysis programs [34].
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Figure 1. (a) Photoemission intensity of the Ge 3d core level at high resolution and liquid nitrogen
temperature on the c(4 × 2)-Ge(001) surface. The structural origin of the peaks is labelled as
sketched in panel (b). (c) Comparison of azimuthal dependence of MS theory with the deconvoluted
experimental intensity of the three main components of the core level [53].

4.2. Valence level photoelectron diffraction

Let us now compare equation (82) to the photoemission cross-section from a valence state in
order to discuss the relation between these two spectroscopies. We shall deal again with the
simple case of weak electronic correlation, where one can safely assume that the initial state
wavefunction�N

G (ri ) can be factorized as a properly antisymmetrized product φv(r)�
N−1
G (ri),

where φv(r) is the valence state.
Under this assumption, if we partition the muffin-tin space in cells around the spheres

that cover the whole space (e.g. Wigner–Seitz cells for periodic systems), we obtain for the
photoemission cross-section in the elastic channel

dσ

dk̂0

= 8π2αh̄ω
k0

π
|S0(h̄ω)|2
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∣
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(83)

where now the cell matrix element

M̃vi
L = 〈�̃L (r)|ê · ri |φi

v(ri )〉
bears the index i of the cell which the space integral is referred to.

For periodic systems with one atom per unit cell we can write, neglecting surface effects,

M̃vi
L = M̃vo

L (kBZ)e
−ikBZ·Rio (84)

where we have made explicit the dependence of the matrix element on the Brillouin zone (BZ)
vector kBZ of the valence band state. In this case the expression for the cross-section becomes
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which is to be compared with the analogous expression for LEED/MEED to be derived below.
Of particular importance is the high energy case in which one integrates over the BZ at

fixed direction of escape of the photoelectron. Taking into account the relation

1

N

∑

kBZ

e−ikBZ·Rio = δio

where N is the total number of unit cells in the system and introducing the average matrix
element

M
vo
L = 1

N

∑

kBZ

M̃vo
L (kBZ)

one finds
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where h̄ω is an average photon energy over the valence band width and we have inserted in the
formula an irrevelant factor e−ik0·Rio to be able to refer site j to site i instead of o.

In other words, if one integrates over the energy of the initial valence state in the BZ,
the amplitudes of photoemission originating from the various unit cells do not interfere any
more and the resulting intensity is interpretable in terms of a localized source. There is still a
difference between this case and the inner shell case though, since the valence state contains
more L components in the wavefunction than the core state so that different combinations of
final L components of the scattering path operator τ interfere to give the photoemitted intensity.

4.3. The Auger electron diffraction

The case of Auger diffraction is quite similar to photoelectron diffraction as only the excitation
process differs. Kostroun et al [58], among others, have proposed an atomic theory of this
effect. Here, we shall derive the cross-section for Auger electron diffraction, i.e. in the case
where the scattering of the escaping Auger electron by the atoms of the surrounding cluster is
fully taken into account.

The present calculation of the Auger process rests on the following assumptions.

(i) The effect is considered as a two-step process (ionization and decay). The ionization step
is of no further interest, so the initial state has a core hole localized on one of the atoms of
the cluster under investigation.

(ii) A non-relativistic first order treatment of the decay (Wentzel ansatz [59]) is used. Since our
aim is the description of the diffraction process of the continuum Auger electron, we can
adopt this kind of approximation without loss of generality, as apparent from the following
assumption.

(iii) The ejected Auger electron is decoupled from the other electrons of the system, so that
one has the option to treat the remaining electrons under more or less sophisticated
approximations.

As is well known, the process originates from the de-excitation of an electron belonging to
an upper orbital into the initial hole, with the concomitant transfer, via the Coulomb interaction,
of the de-excitation energy to another electron (the Auger electron). Therefore, the problem we
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have to treat here is a two-potential problem as we have to take the sample potential into account
as well.

From section 2.3, and more particularly equation (26), we deduce that the Auger transistion
probability per unit time can be written as

Wi→ f = 2π

h̄

∣
∣
∣〈[�−

f ](N−1)|Vc|�(N−1)
i 〉

∣
∣
∣

2
ρ(E f )

where Vc = 1/2
∑

i �= j e2/ri j is the Coulomb potential describing the interaction of the
electrons involved in the transition with the other electrons of the system and ρ(E f ) is the
density of final states for the energy E f that satisfies the conservation of energy.

The transition is between a state of (N − 1) electrons |�(N−1)
i 〉 (if N is the number

of electrons in the neutral cluster) containing a core hole described by the wavefunction
φc(r)χc ≡ φc(x) (where χ is a spin state and x stands for a spin-space variable) and decoupled
from the valence electrons, and a state 〈[�−

f ](N−1)| containing a continuum electron described
by φ−

k (r)�χk ≡ φ−
k (x) (� being the time-reversal operator) and two holes not necessarily

localized onto the atom making the transition (they can both be valence or core electrons or one
core and one valence electron). As in the photoemission case, the exponent (−) indicates that
the wavefunction of the escaping electron obeys a boundary condition that accounts for the fact
that there is no electron in the continuum in the remote past.

The initial Auger state can be written in all generality as

�N−1
i (x1, . . . ,xN−1) (87)

whereas under the assumptions described above and similarly to the photoemission case (32)
we can write for the final state

�N−1
f (x1, . . . ,xN−1) = ((N − 1)!)1/2 A

∑

α

φ−
αk(x1)φc(x2)�̃

N−3
α (x3, . . . ,xN−1) (88)

where A is the usual antisymmetrization operator and the state |�̃N−3
α 〉 contains a core hole in

the initial orbital c and two holes in some upper orbitals.
The single-particle scheme adopted for the Auger transition now follows a reduction

procedure from a many-body approach similar to the one sketched in section 3 for the
photoemission case, whereby the Auger electron is to be considered as moving in an effective
potential related to a particular chosen channel β .

By inserting equations (87) and (88) into the expression for the transition probability,
introducing the effective initial state wavefunction as modified by the final channel β ,

�
β

eff(x1,x2) =
∫ ∫

�̃N−3
β (x3, . . . ,xN−1)

∗
�N−1

i (x1, . . . ,xN−1) dx3 · · · dxN−1 (89)

and normalizing the continuum wavefunction to one state per Rydberg, one finds for the width

 of the Auger β line


 = 2k

16π2
|Dk ± Ek|2

where

Dk =
∫ ∫

[

φc(x1)φ
−
k (x2)

]∗ 1

|r1 − r2|�
β

eff(x1,x2) dx1 dx2 (90)

Ek =
∫ ∫

[

φc(x2)φ
−
k (x1)

]∗ 1

|r1 − r2|�
β

eff(x1,x2) dx1 dx2 (91)

are the direct and exchange transition matrix elements for the Auger process. The + sign
applies for singlet states, the − sign for triplet states. Specialization to various approximations
for the initial and/or final states can be found in [60].
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As for photoemission from valence states, we partition the muffin-tin space in cells around
the spheres covering the whole space. Assuming that the core electron φc is localized in the
cell at the origin, we can write D = ∑

i Di , where Di are the same integrals as defined above
in which the second integration is extended to the space contained in the i th cell, the first being
always extended to the cell at the origin. If we now insert for [φ−

k (r)]∗ the expression of
equation (49) in the i th cell we obtain for 
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which can be rewritten according to (51) as
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where Ai
L = Di

L − Ei
L and the amplitudes Di

L and Ei
L are obtained from those of equations (90)

and (91) by replacing φk by �̃i
L of equation (49).

Regarding the cell dependence of the amplitude Ai
L we can distinguish three cases. Either

the two final holes are in core states (in which case Ai
L = Ao

Lδio) or both are in valence
delocalized states (full dependence on site i ) or only one is in a core state (in which case either
Ai

L = Di
L − Ei

Lδio or Ai
L = Di

Lδio − Ei
L ).

In the case of periodic systems, neglecting surface effects, one has the further relation

Ai
L = Ao

LeikBZ·Rio .

The similarity of equation (93) to equation (82) is striking. In the case where the final two-
hole states are localized onto the atom at the origin the formula is practically the same; only the
amplitude for producing the final state photoelectron is different. Moreover, the photoelectron
energy is fixed in the Auger process, whereas in photoelectron diffraction it can be tuned by
varying that of the impinging photon. Notice also the further interference process in the case of
a CVV Auger process, which is the same as in the photoemission process from a valence state.

4.4. The Auger–photoemission coincidence spectroscopy (APECS), and angle-resolved (AR)
APECS

Auger and core-level photoelectron spectroscopies are strongly correlated, as the core hole
filled during the Auger decay is just the one created by the photoemission process. Such a
connection has been more clearly explored only recently, with the development of Auger–
photoelectron coincidence spectroscopy (APECS), where the core photoelectron is measured
in time coincidence with its associated Auger electron. The important features of this
spectroscopic technique were underlined more than 15 years ago by Sawatzky [62].

(a) Increased surface sensitivity. In a coincidence event, the two electrons must originate
from the same atom, and, thus, the effective escape depth in solids is reduced to: λeff =
λPλA/(λP + λA) (P labels the photoelectron and A the Auger). Here λ, through the relation
I = I0e−x/λ , measures the probability that an electron emitted by an atom at a distance x from
the surface escapes from the solid. The fact that λeff is always smaller than the escape depth of
the two single events reveals the increased surface sensitivity for this technique.

(b) Precise identification of overlapping multiplet structures. The kinetic energies of the
photoelectron and Auger electron are related by the expression

E P
k + E A

k = h̄ω − (EN−2 − EN ) (94)
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where h̄ω is the energy of the incoming photon and EN−2 − EN is the energy difference of
the two-hole final state and the initial state. Thus, for a given process, the sum of Auger and
photoelectron kinetic energies is constant, and this allows the separation of the various multiplet
contributions (or satellite lines) to the total photoelectron spectrum by selecting the energy of
the Auger electron and vice versa.

(c) Elimination of the lifetime broadening due to the decay of the intermediate one-hole
state. This property comes directly from equation (94). The sum of the Auger plus the
photoelectron kinetic energy has a width which is only determined by the lifetime of the two-
hole state (N−2): thus, if we measure the photoelectron spectrum in coincidence with an Auger
electron of a particular kinetic energy, the intermediate state lifetime broadening is removed.

A further level of discrimination is obtained when the angular dependence of the two
emitted electrons is also resolved (AR-APECS). In this case, the detection of escape directions
gives an insight into the orbital occupancy of the two-hole residual ion, due to angular
momentum conservation [63]. It is the aim of this section to extend the MS formalism to
cover also this kind of spectroscopy.

In order to deal with AR-APECS, we should start from equation (29), with VI1 given by the
photoionization potential and VI2 by the Coulomb repulsion. In this way, Auger–photoelectron
angular correlations can be correctly described and the total amplitude for the process can be
written as

A ∝
∑

n

〈� f | e2

|r1−r2| |�n〉〈�n |êqi ·peiqi ·r|�i〉
Ei − En + i
n

δ(Ei − En). (95)

In the following we deal with core–core–core spectroscopies, as the introduction of
valence-shell spectroscopies is a more formidable task and it will be attacked in the near future.
Thus equation (95) can be labelled in terms of core-angular-momentum quantum numbers.
Moreover, as we are interested in angular correlations at fixed energy for Auger electrons
and photoelectrons, in the following we drop the energy dependence in the delta function and
the denominator. If, moreover, we restrict ourselves to the dipole approximation and do not
consider spin–orbit splitting ( j j -coupling can be dealt with in a similar way), we finally get

Al1l2 L M SSz

lcmcσc
(kP , σP , kA, σA) = 〈(lc,mc, σc);φ−(kA, σ A)

∣
∣

e2

|r1 − r2|
∣
∣(l1, l2)L M, SSz 〉

× 〈φ−(kP , σ P )|êqi · r|(lc,mc, σc)〉 ≡ Fl1l2 L M SSz
lc mcσc

(kA, σA)Dlc mcσc (kP , σP ).

(96)

Here subscripts P and A refer to the photoelectron or Auger electron, and k and σ are
their outgoing wavevector and spin. The overline indicates time reversal. The dipole amplitude
Dlc mcσc (kP , σP ) depends on the core–shell quantum numbers lc, mc and σc. In the Coulomb
matrix element Fl1l2 L M SSz

lc mcσc
(kA, σA) we represent the final two-hole state in terms of its global

angular momentum as

|((l1, l2)L,M, S, Sz 〉 = Rl1 Rl2 [Yl1 ⊗ Yl2 ]L ,M [χ(1) ⊗ χ(2)]S,Sz . (97)

Here [Yl1 ⊗ Yl2 ]L ,M ≡ ∑

m1,m2
C L ,M

l1,m1,l2,m2
Yl1,m1 Yl2,m2 is a tensor spherical harmonic, where

C is the usual Clebsch–Gordan coefficient and Rl1 and Rl2 are the radial parts of the single-
particle wavefunctions.

If we adopt the usual expansion for the scattering wavefunction inside the muffin-tin sphere
I0

φ−(ri ,k, σ ) =
∑

L

B0
L(k)Rl(ri)YL (r̂i)χσ (98)
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where the amplitudes Bi
L(k) are defined by equation (51), it becomes possible to express dipole

and Coulomb matrix elements as

Dlc mcσc (kP , σP ) =
∑

lp m p

√

3(2lc + 1)

4π(2l p + 1)
Rlp ,lc C

lp ,0
lc ,0,1,0

C
lp ,m p

lc ,mc,1,0
δσP ,σc B0

L p
(k) (99)

and

Fl1l2 L M SSz
lc mcσc

(kA, σA) =
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lA,l

g(lA, l, l1, l2, lc, L)

×
∑

m A,mc,

C L ,M
lc ,mc,lA,m A

C S,Sz
1/2,σc,1/2,σA

B0
L A
(kA)− Ex (100)

where Ex is the exchange term, with l1 and l2 interchanged, Rlp ,lc ≡ ∫

Rlp (r)r Rlc (r) dr is
the radial dipole matrix element and g(lA, l, l1, l2, lc, L) takes into account the radial matrix
element for the Coulomb process. Its explicit expression is

g(lA, l, l1, l2, lc, L) = sin δlA eiδlA

∫

r 2
1 r 2

2 Rlc (r1)RlA (r2)
r l
<

r l+1
>

Rl1 (r1)Rl2 (r2)
dr1dr2

2l + 1

× (−1)(l+l2+lc+L)
√

(2l + 1)(2l1 + 1)(2lc + 1)Clc ,0
l,0,l1 ,0

ClA ,0
l,0,l2 ,0

{

lA l2 l
l1 lc L

}

(101)

where the phase shifts sin δlA eiδlA are explicitly indicated. Of course, when the two electrons are
equivalent the exchange term disappears: however, in this case, particular care must be taken
for the normalization procedure of coupled wavefunctions, as detailed, e.g., in [66].

The total intensity is obtained by summing up the square modulus of the amplitude
incoherently over the initial and final states and coherently over the intermediate states,
following equation (29). We find, for the spin-unpolarized case,

Ilc ,l1,l2,L ,S(kA, kP ) =
∑

σA,σP ,M,Sz

∣
∣
∣
∣

∑

lA ,l,lP
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×
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m A,m p,mc,σc

C
lp ,m p

lc ,mc,1,0
δσP ,σc C

L ,M
lc,mc ,lA,m A

C S,Sz
1/2,σc,1/2,σA

B0
lP
(kP )B

0
lA
(kA)

∣
∣
∣
∣

2

=
∑

lA ,l,lP

∑

l′A ,l′,l
′
P

flP f ∗
l′P

g(lA, l, l1, l2, lc, L)g∗(l ′A, l
′, l1, l2, lc, L)

× (−1)lA+l′A+lP +l′P (2L + 1)
√

(2lP + 1)(2l ′P + 1)

×
∑

L1,L2

{

lc lA L
L1 1 lP

}{

lc l ′A L
L2 1 l ′P

}

×
∑

M

C L1,M
L ,M,1,0C L2,M

L ,M,1,0[B0
lP

⊗ B0
lA
]L1,M [B0∗

lP
⊗ B0∗

lA
]L2,M (102)

with flP ≡ sin δlP eiδlP

[

3(2lc + 1)/4π(2l p + 1)
] 1

2 Rlp ,lc C
lp ,0
lc ,0,1,0

. In contrast to the atomic case
(see, e.g., [64, 65]), equation (102) cannot be simplified further in analytical terms, because the
B0

L do not allow an addition theorem like for spherical harmonics. Thus, equation (102) is our
final result to be evaluated numerically. However, in order to show a simple example of Auger–
photoelectron angular correlation, it is convenient to describe the atomic case, where the B0

lm
coefficients are substituted by the spherical harmonics Ylm . In this case the addition theorem can
be applied and the two products of double spherical harmonics can be simplified with the help
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of the expression Ylm(�)Yl′m′(�) = ∑

m,m′ C L ,M
l,m,l′ ,m′ YL M (�). Then after straightforward, but

lengthy, calculations to sum up all azimuthal dependences in the Clebsch–Gordan coefficients,
it is possible to derive the final expression

Ilc ,l1,l2,L ,S(kA, kP ) =
∑

L A,L P ,L

c(lc, l1, l2, L, S, L A, L P , L)[YL P (kP)⊗ YL A (K A)]L ,0 (103)

where c(lc, l1, l2, L, S, L A, L P , L) is a coefficient depending, among other things, on the radial
matrix elements. In equation (103), L = 0, 1, 2 (for the purely dipole incoming radiation)
and M = 0, because we suppose the incoming radiation to be directed along z. One can
generalize this result to the case where the polarization is expressed by a density matrix
operator, which turns out to be scalarly coupled to the double spherical harmonics (in this
case we recover the results of [64, 65]). However, expression (103) is enough to discuss a
simple example of angular correlation on an atomic system. In [67] coincident experiments
were performed between an Ar 2p photoelectron of 5 keV kinetic energy and each of the
3p Auger electrons. Amongst all possible decay channels, one is suitable for an immediate
interpretation, Ar + hν → Ar2+3p4(1Se) + eA (l = 1), as it involves only one possible value
for lA, so that we do not need Coulomb radial matrix elements. We have also assumed that the
radial matrix element of the l − 1 channel of the photoelectron process is strongly suppressed
with respect to the l + 1. In this case, the angular correlation expressed by equation (103)
can be calculated analytically and provides the observed angular correlation, as given by the
expression (cos θA+3 cos(θA−2θP ))

2. Here it is clear that the angular position of the maximum
intensity in the revealed Auger electron strongly depends on the angular position of the revealed
photoelectron. Moreover, it is immediate to check that integrating this analytical expression
over θA leaves the usual angular dependence for atomic photoelectrons, which is given by
(1 + βP2(cos θP)).

All the other cases, as well as the possibility to describe theoretically the extension of the
correlation techniques to solid state physics, require the implementation of a computer code,
which is currently in progress.

4.5. Other coincidence spectroscopies

The APECS is probably one of the best known coincidence spectroscopies but there are some
other such spectroscopies which have proved equally useful and informative in the last decade.
Those spectroscopies that are among the scope of this review article (i.e. for which the incoming
beam of particles is composed either of photons or of electrons) can be divided into two groups,
respectively called (γ, 2e) and (e, 2e). The first term in the doublet represents the incoming
beam and the second the outgoing particles. Therefore, these two families of spectroscopies
can be viewed as the coincidental detection of a second electron in photoemission, Auger or
EELS. In all cases, as we have already seen for APECS, coincidence spectroscopies provide
a unique way to select a subset of transitions in order to disentangle the complex cascade of
effects that contribute to a given single-electron spectroscopy peak.

APECS, which we have discussed in detail, is not the only (γ, 2e) coincidence spec-
troscopy. Recently, two-electron photoemission has been developed both experimentally [68]
and theoretically [27, 28]. Two competing effects can contribute to its cross-section. In one
case, an electron excited by a photon in the ultraviolet range ejects a second (valence) electron
through an inelastic collision. In the second case, the photon excites a quasiparticle formed by
an electron pair [27]. The former contribution however should dominate in solids in contrast to
atomic targets because of the high number of valence electrons. Its potentialities have not been
assessed yet, but it will certainly prove useful in the study of the physics of correlations.
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Like APECS, (e, 2e) coincidence techniques are in a rather advanced stage now, although
their application to solids took some time because of the difficulties linked to the short mean
free path of electrons in the solid matter. Indeed, in a standard (e, 2e) experiment, which
consists generally in the collision of the incoming electrons with valence electrons of the
sample, most of the primary electrons and those excited are lost in the bulk. For this reason,
only two experimental configurations are possible:

(i) a high energy (∼10 keV) primary beam in transmission through a thin film;

(ii) a low energy beam in a back-reflection geometry.

In the first case, the cross-section reflects the spectral momentum density of the target
electron while in the second case, because of multiple scattering and only 2D momentum
conservation, no such direct information on the electronic structure can be obtained [69],
which means in particular that a theoretical modelling is necessary in order to extract this
type of information. Nevertheless, the information that can be extracted with these coincidence
spectroscopies, both on electronic structure and scattering dynamics, is more detailed than
that to be obtained from the corresponding one-electron techniques. Moreover, some specific
information on electron–electron correlations can be obtained, including some visualization of
the exchange–correlation hole [70, 71].

It should be noted that spin-polarized (e, 2e) spectroscopies are now currently used
to study the corresponding spin-related quantities both for ferromagnetic surfaces [72–74]
(through the exchange interaction) and for non-magnetic heavy targets [75, 76] (through the
spin–orbit interaction).

The starting point of all these coincidence spectroscopies is the expression (29) of the
doubly differential ionization cross-section, as for APECS. The importance of the multiple-
scattering effect in these spectroscopies has been stressed by Feder et al [69] and by Fominykh
and co-workers [70]. The present framework allows a proper treatment of the multiple
scattering for all the (γ, 2e) and (e, 2e) coincidence spectroscopies.

4.6. The LEED/MEED case

The cross-section for electron scattering off a finite cluster of atoms, however big, located at
sites R j is obtained in terms of the T -matrix, which is defined on the basis of the behaviour
of the scattering wavefunction in the asymptotic region. Following appendix A, we write this
wavefunction as

φ+
k (ro) =

∑

L

Ao
L(k)

[

JL(ro)+
∑

L ′
H̃ +

L ′(ro)TL ′L

]

. (104)

In the same appendix, we demonstate that the T -matrix elements for the cluster can be
expressed as

TL L ′ =
∑

i, j

∑

�,�′
J oi

L�τ
i j
��′ J

jo
�′L ′ . (105)

Notice that with the definitions given in section 3.1 the scattering path operator τ is proportional
to 1/k. Therefore, recalling the expression (25) of the cross-section for electron scattering off
a sample, and making use of the fact that the element 〈k|L〉 = √

2/(πk)i−lYL (k̂) with our
normalization conditions, we obtain for the scattering cross-section into the direction k̂s for
electrons impinging on the cluster with wavevector ki
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Moreover using the relation derived in appendix A
∑

L

ilYL (k̂)J
jo

L L ′ = il
′
YL ′(k̂)eik·R j o (107)

we finally find for the cross-section

dσ

dk̂s

= (4π)2
∣
∣
∣
∣
∣

∑

i,L

∑

j,L ′
i−l′ YL ′(k̂s)e

−iks ·R j oτ
j i

L ′ L ilYL(k̂i )e
iki ·Rio

∣
∣
∣
∣
∣

2

= (4π)2
∣
∣
∣
∣
∣

∑

i,L

∑

j,L ′
i−l′ YL ′(k̂s)e

−iq·R j oτ
j i

L ′L ilYL(k̂i )e
iki ·Ri j

∣
∣
∣
∣
∣

2

= (4π)2
∣
∣
∣
∣
∣

∑

i,L

∑

j,L ′
i−l′ YL ′(k̂s)e

iks ·Ri j τ
j i

L ′L ilYL (k̂i)e
−iq·Rio

∣
∣
∣
∣
∣

2

(108)

where q = ks − ki is the momentum transfer.
The same formula can be derived in the case of an infinite system, which is obtained as the

limiting case of a finite system of volume V which is enclosed in a larger volume V0 such that
lim V0 → ∞ before lim V → ∞ and lim V0/V → ∞ [61].

It is interesting to note at this point that these equations are also valid in the presence of
electron damping. In fact, we already noted in section 3.3 that the elastic cross-section for
electron scattering in a complex potential is given by the squared modulus of the scattering
amplitude calculated in the same way as for real potential [50].

Equation (108) is valid whatever the spatial arrangement of the atomic sites. It has the
appearence of a linear combination of photoelectron diffraction amplitudes emanating from
any initial site i , with the coefficients given by ilYL(k̂i )e−iq·Rio . This is in keeping with
the physical fact that the incoming electronic wave can be scattered by any center i so that
there is no localized source. In this respect equation (108) is very similar to the analogous
expression for the photoemission process from a valence state equations (83) and (85) although
the linear combination in the angular momentum variables has different coefficients. Moreover,
the scattering amplitude in (108) is very reminiscent of the Thomson amplitude for x-ray
diffraction, with a complex form factor given by a photoelectron diffraction amplitude. This
obviously leads to a Bragg condition for scattering in periodic structures.

In this last case it would be very useful to see how the various expressions specialize in the
case of periodic systems, e.g. a stack of a certain number N of Bravais-lattice planes with the
same unit cell, but possibly different atoms in each plane. We shall neglect for a moment the
electron damping to take full advantage of the periodicity and shall indicate at the end how the
result is modified in presence of damping.

If we fix an arbitrary origin in the mth plane (m = 1, N) by the vector rmo and indicate
the plane lattice vectors by Pn , then the general site position is given by

Rio = rmo + Pn.

In order to exploit the translational invariance of the system within the planes we take the
Fourier transform of the defining equation (52) for the scattering path operator τ , which can
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also be written as

τ
i j
L L ′ = t iδi jδL L ′ − t i

∑

k �=i

∑

L ′′
Gik

L L ′′τ
k j
L ′′ L ′ (109)

introducing the quantities

T m
L L ′(k) =

∑

m′,Pn

eik·(rmo−rm′o−Pn )τ
rmo , rm′o+Pn

L L ′ (110)

together with

G̃mm′
L L ′ =

∑

Pn

eik·(rmo−rm′o−Pn)G
rmo,rm′o+Pn
L L ′ (111)

and the quantity that describes multiple scattering within each plane m

τm
L L ′(k) = [(t−1 + G̃mm(k))−1]L L ′ (112)

where t denotes the matrix tm
l δL L ′ in the angular momentum indices. We find in this way

T m
L L ′(k) = τm

L L ′(k)−
N∑

m′=1

∑

�,�′
τm

L�(k)G̃
mm′
��′ T m′

�′L ′(k). (113)

We thus recover equations (5.22) of [12] (see also references therein) for a stack of periodic
planes. The only difference with the no damping case, apart for the complex phase shifts used
in the calculation of the atomic t matrices, is that the quantities G̃mm′

L L ′ depend now on the origin
chosen on the various planes. It is easy to convince oneself that the correct choice in this
case is to take all the origins on the various planes as close as possible to the z-axis, assumed
perpendicular to the surface, and perform the lattice sum in equation (110) by including all the
lattice points within a circle of radius between two and three times the electron mean free path
up to convergence.

5. Probe electron not detected

In this section, we will consider spectroscopies where the probe electron is not detected.

5.1. Photoabsorption

Even though the case of x-ray absorption has already been treated in some details in section 3.2,
we would like to present in this section two applications of the new method of fitting the
XANES energy region of the absoprtion spectrum. The first application analyses the Fe
K-edge polarized XANES of a single crystal of the iron protein carbonmonoxy-myoglobin
(MbCO) and its cryogenic photoproduct Mb∗CO, with the purpose of deriving the structural
parameters (angles and bond lengths) around the metal ion. The fitting procedure allows us to
discriminate among three (in the case of MbCO) and two (in the case of Mb∗CO) conflicting
sets of parameters derived from diffraction analysis of the crystal proteins. The technique is
simple and is illustrated in figure 2. As soon as a best fit is achieved between the simulated
and the experimental signal, the electronic parameters (such as potential and energy-dependent
damping) are left unchanged, while the fitted atomic positions are replaced by the diffraction
sets under scrutiny. The set that gives the smallest R-factor is considered the best candidate.
More details are given in [49]. The second example concerns the fitting of electronic properties,
in particular electron population analysis. The idea is that in systems where the absorption
process can be reasonably well described in terms of one electron moving in an effective optical
potential of the local density type (like the H-L potential), then, assuming a known structure,
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Figure 2. Comparison between polarized (êq perpendicular to the haem plane) experimental
(· · · · · ·) and calculated (——) Fe K-edge spectra derived from two different reported structures
for Mb∗CO protein. The bottom theoretical curve is the MXAN best fit [49].

one can try to fit the total charge density onto the experimental spectrum. This procedure has
been followed to obtain the 3d and 2p occupation numbers on Ti and O respectively in TiO2.
On Ti atoms, different from the photoabsorber, one finds nd = 1.00, n p = 6 − nd/2 = 5.50 on
the oxygen atoms and n∗

d = 1.91 on the Ti photoabsorber, pointing to an incomplete screening
of the core-hole charge. This is in keeping with other evidence from Ca compounds [37] and
seems to be a general feature of absorption. Figure 3 describes the fitting procedure and shows
that the most sensitive part of the spectrum for this kind of analysis is the pre-edge structure.
More details are found in [77].

5.2. EELS

The basic idea that presided over the development of the study of the fine structure in EELS
(EELFS) was the strong similarity observed in many cases with EXAFS spectra. This led
people to think that it might be possible to perform EXAFS-like analysis without the need for
synchrotron radiation, as EELS is a typical laboratory technique.

In an EELS experiment, a primary beam of electrons is focused onto the sample under
study. The scattered beam, at an energy lower than that of the incoming beam, in contrast
to LEED, is then measured. The difference in energy between the two beams results from the
promotion of an electron, generally from a core state, to an excited state (bound or continuuum)
through a Coulomb interaction.

The similarity of core EELS to EXAFS is clear, as only the type of excitation of the
core electron (Coulomb versus dipole) varies and gives the same chemical sensitivity. We
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Figure 3. Lower panel: comparison between experimental (· · · · · ·) and calculated (——) Ti K-edge
XANES spectra of a single crystal of TiO2 for two orientations of the electric field and wavevectors.
Inset: variation of the R-factor with the Ti 3d occupancy. Upper panel: p-projected density of states
on a Ti atom calculated by the FLAPW band structure method [77].

see therefore why similar modulations are expected and have been found very often in practice.
Let us look in more detail at the differences we can expect on the basis on the experimental
environment. First, the ingoing and outgoing particles in EELS are electrons, while they
are photons in EXAFS. This means that both beams will undergo multiple scattering and
this will interfere with the multiple scattering of the lost (excited) electron to complicate the
experimental pattern. Then, we know that the dipole approximation usually holds for EXAFS.
Coulomb selection rules are more involved. However, as hinted by Saldin [78], if the ratio of
the energy of the loss electron to that of the incoming beam is very small with respect to unity,
there should be a dominance of the dipole-allowed channel in the excitation process. This
condition is not always fulfilled however in experiments.

Nevertheless, the similarity with EXAFS, and the fact that only electrons are involved
in the various processes, indicates that it must be possible to treat EELS within the same
theoretical framework. Such an approach has been developed by De Crescenzi et al [79] within
a scattering path operator approach in a mixed spherical wave/plane wave representation and
by Sébilleau [80] from a basis-independent point of view. We will outline the derivation of the
former here and refer the reader to the corresponding reference for further details.

The starting point of the derivation is provided by equation (27), which gives the cross-
section for a particle energy involved in inelastic scattering, within the distorted wave Born
approximation, in terms of the matrix element of the loss potential. In the case of EELS, the
initial and final states of the system in the presence of the sample potential VS are many-particle
states which can be written as |�+

i 〉 = |ϕo〉|φ+
i 〉 and 〈�−

f | = 〈φ−
f |〈ϕn|, where, as before, |φ±

i, f 〉
is an electron state with the appropriate boundary condition, the eigenstate of HS = Ho + VS,
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and |ϕo〉, |ϕn〉 are respectively the ground state and an excited state of the system. A sum over
all the possible excited states n should be added outside the square modulus in (27) with the
corresponding energy conservation rule δ(Eo + Ei − En − E f ). The Coulomb potential being
a two-particle operator, exchange processes must also be taken into account, leading to

dσ

dk̂ f

= 4π4 k f

ki

∑

n

∣
∣
∣
∣
〈ϕn|〈φ−

f |VC |ϕo〉|φ+
i 〉d±

× 〈φ−
f |〈ϕn|VC |ϕo〉|φ+

i 〉e

∣
∣
∣
∣

2

δ(Eo + Ei − En − E f ) (114)

where the indices d and e refer respectively to the direct and exchange integrals and the − sign
is for triplet states, the + for singlet. Rydberg units have been assumed here.

If N is the total number of electrons in the system, then the direct and exchange terms can
be written as

〈ϕn|〈φ−
f |VC |ϕo〉|φ+

i 〉d = 1

N

N∑

m=1

∫ ∫

ϕ∗
n(r1, . . . , rm, . . . , rN )

× ϕo(r1, . . . , rm, . . . , rN )φ
−∗
f (r)

1

|r − rm |φ
+
i (r) dr dτ (115)

〈φ−
f |〈ϕn|VC |ϕo〉|φ+

i 〉e = 1

N

N∑

m=1

∫ ∫

ϕ∗
n(r1, . . . , rm−1, r, rm+1, . . . , rN )

× ϕo(r1, . . . , rm, . . . , rN )φ
−∗
f (rm)

1

|r − rm |φ
+
i (r) dr dτ (116)

where dτ = ∏N
m=1 drm .

Using the approximation described in [79] to calculate the exchange term in (116) we can
define an effective transition operator for the process as

T ±(r) =
∫

φ−∗
f (r

′)
(

1

|r − r′| ± 4π

|ki − k|δ(r − r′)
)

φ+
i (r

′) dr′ (117)

where k is the wavevector of the excited electron.
By partitioning the volume in non-overlapping cells � j with no interstitials, and using

equation (49), we can calculate the cell integrals in terms of the local solutions φ+
i (r j ,ki ) and

the scattering amplitudes B j
L(k). For a finite cluster this poses no particular computational

problems.
In the case of periodic systems we assume that the sample under investigation can be

decomposed into long-range ordered planes so that LEED-type states can be used for |φ+
i 〉 and

〈φ−
f |, following the usual behaviour of Bloch functions. When the energies of the incoming

and scattered beams are large enough, the surface does not contribute much and we can use
the lattice vectors of the crystal rather than those of the individual planes (including the surface
plane) to describe the LEED-type states. In this case the scattering amplitudes in equation (49)
satisfy the relation

B j
L(ki ) = B0

L(ki )e
iki ·R j 0 (118)

so that the effective transition operator takes the form

T ±(r) = 4π
∑

n

ei(qBZ+Gn)·r
[

1

|qBZ + Gn|2 ± 1

|ki − k|
]

ρ(Gn).

Here, Gn is a reciprocal lattice vector of the system and q = ki −k f is the momentum transfer.
Moreover ρ(Gn) is the Fourier transform of the quantity φ+

i (r)φ
−∗
f (r).
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In both cases therefore, the sum (difference) M+(M−) of the direct and exchange matrix
elements takes the form

M± = 1

N

N∑

m=1

∫

ϕ∗
n(r1, . . . , rm, . . . , rN )ϕo(r1, . . . , rm, . . . , rN )T

±(rm) dτ. (119)

If we assume that, apart from the core electron undergoing the transition, all other electrons
in the system are merely spectators, the determinantal approximation applies to the many-
electron states |ϕn〉 and |ϕo〉, namely |ϕo〉 = |ψ〉|φLo 〉 and |ϕn〉 = |ψ〉|φk〉, where |ψ〉 is a
(N − 1)-electron state, |φLo 〉 is the initial core state of the excited electron and φk its scattering
wavefunction with energy k2. As a consequence expression (119) reduces to

M± =
∫

φ∗
k(r)T

±(r)φLo(r) dr

which, when replaced into the expression (114) of the cross-section, leads to
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where the Green function G(r, r′) is given by equation (60).
As before, for real potentials the cross-section reduces to
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Lo Lτ

00
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]

(120)

with the coupling matrix elements given by

ML Lo =
∫

�̃L(r)T (r)φLo(r) dr (121)

dropping for simplicity the ± sign on M and T .
This is indeed an expression similar to that found in x-ray absorption with the difference

that the coupling elements ML Lo lead in principle to more complex selection rules and that the
effective transition operator T (r) contains the effect of the multiple scattering of the incoming
and outgoing electron. It is indeed clear from the form of the transition operator T that the
expression (121) describes processes like diffraction of the incoming beam prior to loss or loss
followed by diffraction of the outgoing beam.

The predominance of the dipole term has been demonstrated in the case of the excitation
of an s core level (lo = 0) in crystalline silicon, where De Crescenzi et al [79] showed that most
of the cross-section could be obtained by restraining the sum over l and l ′ to the value unity,
but monopole transitions were also important. However, for other core levels, the situation is
more complex and there is no clear demonstration of the validity of the dipole approximation.

5.3. The anomalous resonant x-ray diffraction

Anomalous resonant x-ray diffraction is a very powerful experimental technique to analyse
structural and electronic properties of matter in a ordered phase. This spectroscopic technique
measures the elastic Bragg reflection intensities versus incident photon energy. As apparent
from expression (22), the resonant x-ray scattering process may be described as the virtual
absorption of a photon by a core electron that is promoted to an unoccupied level. The excited
electron decays to the initial state, thereby emitting the outgoing photon without loss of energy.
The unoccupied states are sensitive to the electronic configuration, such as the population of
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the highest occupied orbitals, their magnetic moment and the surrounding atomic distribution.
If the decay process of the excited photoelectron happens to be toward a state different from the
initial state, the initial photon will be inelastically scattered, so that in this case one can resolve
the energy of the final outgoing photon in order to study the low energy excitations of the system
(e.g. charge transfer and orbital excitations in strongly correlated electron systems). The former
technique is referred to as resonant elastic x-ray scattering (REXS) or resonant x-ray diffraction
(RXD); the latter instead goes under the name of resonant inelastic x-ray scattering (RIXS). In
this review however we shall only deal with REXS.

When measured at Bragg-allowed peaks, REXS is more often called diffraction anomalous
fine structure (DAFS) and combines the long range sensitivities of x-ray diffraction with the
short range sensitivities of x-ray absorption techniques. In the extended fine structure region,
DAFS provides the same short range structural information as EXAFS: the bond lengths,
coordination numbers, neighbour types, and bond disorders for the atoms surrounding the
resonantly scattering atoms. In the near edge region, DAFS provides the same structural and
spectroscopic sensitivities as XANES: the valence, empty orbital and bonding information for
the resonant atoms. Therefore, DAFS can provide EXAFS- and XANES-like information for
the specific subset of atoms selected by the diffraction condition and site-specific absorption-
like spectroscopic and structural information for the inequivalent sites of a single atomic species
within the unit cell.

At Bragg-forbidden peaks, REXS becomes a probe sensitive to the electronic configuration
of the resonant element, which includes the surrounding structural arrangement of the
neighbouring atoms and its symmetries, the highest occupied orbitals, their ordering and their
magnetic moments. This technique has found natural application in several 3d systems such as
high Tc cuprates, the magneto-resistive manganites and other electron correlated systems like
transition metal oxides. Since the excitation and the subsequent decay processes are mainly
dipolar in character (but we shall also report on dipole–quadrupole interference effects), one
might think that REXS performed near the transition metal L edge is the best way to probe
directly the chemical and magnetic environment of the important 3d electrons. However,
their 2p edges lie at around 650 eV, which corresponds to ≈19 Å for photon wavelengths
and the minimum dimensions of the periodic unit cell. Moreover, at these photon energies
all the experimental set-up, including the spectrometer, the detector and the cold finger of the
cooling system, needs to be in vacuum. Faced with these difficulties, an alternative approach
has been to study the 3d properties indirectly with K-edge REXS. Even though delocalized,
the intermediate conduction band states of p symmetry reached in K-edge spectroscopies are
sensitive enough to the electronic properties of the underlying states of d symmetry. This
technique has therefore been used to indirectly probe the orbital [84, 85] and magnetic [82, 83]
correlations present in the ground state of many correlated electron systems.

In this review we shall limit ourselves to charge scattering, in which only time-reversal
even properties of the system are probed, like orbital ordering in manganites and a subtle
dipole–quadrupole interference effect, present in many corundum geometries, that allows the
determination of a quantity related to the local rotatory power in V2O3 and α-Fe2O3 [88].

With this in mind, the elastic scattering amplitude of the process, A(k, ω), can be written
in terms of the atomic scattering factors (ASFs), f j (ω), of the atoms at positions R j in the unit
cell as

A(k, ω) =
∑

j

eik·R j f j (ω) (122)

where h̄k is the momentum transfer in the scattering process, h̄ω the incoming and outgoing
photon energy and the sum is over all atoms in the unit cell. The ASF is given by the resonant
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term of equation (21)

f j (ω) = r0

m

∑

n

〈φ( j)
i |ê∗

qs
· pe−iqs ·r|φn〉〈φn |êqi · peiqi ·r|φ( j)

i 〉
h̄ω − (En − Ei)− i
n

(123)

where we have explicitly indicated that the origin for the initial state φi is taken on the j th
scattering atom. Here 
n is a damping term that takes into account the core hole and the finite
lifetime of the excited states φn and the index i(s) refers to the incident (scattered) properties
of the photon field. In the multiple-scattering approach, φn ≡ φk is the scattering wavefunction
of equation (98). In this case the intermediate sum

∑

n becomes an integral over the kinetic
energy E = k2 of the excited photoelectron above the Fermi level and over the direction of
k̂ [82]. In this case, using the generalized optical theorem (55) for the scattering amplitude
B j

L(k), writing for short RL(E) = Rl(E; r)YL(r̂) and defining

f
′′
j (E) = r0

m

∑

L L ′
〈φ( j)

i |ê∗
qs

·pe−iqs ·r|RL(E)〉〈RL ′ (E)|êqi ·peiqi ·r|φ( j)
i 〉

(

− 1

π

)

Im
[

τ
j j

L L ′(E)
]

(124)

we can write equation (123) as

f j (ω) =
∫ ∞

0
dE

f
′′
j (E)

h̄ω − (E + Ic)− i
(E)
(125)

writing E + Ic = En − Ei , where E is the photoelectron kinetic energy and Ic is the
core ionization energy referred to the Fermi level. Alternatively, one can use the real space
representation (60) of the Green’s function of the system [89] to calculate f

′′
j (E).

Neglecting the electric dipole–magnetic dipole terms, which are usually negligible in the
x-ray range, we can write the matrix elements of the transition operator in the coordinate form
up to the electric quadrupole contribution as [90]

〈φ f |êq ·peiq·r|φi〉 ∝ 〈φ f |êq · r

(

1 + i

2
q · r

)

|φi〉. (126)

The matrix element in equation (123) depends only on the electronic part of equation (126),
in such a way that the radiation parameters, êqi(s) and qi(s), can be factorized. After some algebra
equation (123) can be written as a scalar product of two irreducible tensors [91]

f j (ω) =
∑

p,q

(−1)q T (p)
q F (p)

−q ( j ;ω) (127)

where T (p)
q depends on the incident and scattered polarizations and wavevectors and F (p)

q is
the tensor representing the properties of the system. It is important to note that F (p)

q ( j ;ω) ≡
〈φ( j)

i |F̂ (p)
q (ω)|φ( j)

i 〉 is such that it must belong to the totally symmetric representation of the
local point group of the scattering atom (the A1g representation, in Bethe’s notation). In fact it

is easy to check that if R̂ is a symmetry operation for |φ( j)
i 〉 (i.e., R̂|φ( j)

i 〉 = |φ( j)
i 〉) then

〈φ( j)
i |F̂ (p)(ω)|φ( j)

i 〉 = 〈φ( j)
i |R̂−1 F̂ (p)(ω)R̂|φ( j)

i 〉. (128)

Thus, the only allowed matrix elements are those of the components of F̂ (p)(ω) that are
invariant for any symmetry elements of the point group.

The link with the multiple-scattering theory is provided by the fact that the scattering
amplitude expressed by the ASF turns out to be proportional to mean value in the scattering
functions of some multipolar operator (magnetic dipole, electric quadrupole, etc according to
the kind of reflection and local symmetry), as detailed, e.g., in [82, 85, 92–94].
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In the following we consider some examples where the previous ideas are applied and it is
shown how a multiple scattering calculation can provide quantitative information about REXS
experiments in the case of manganites (e.g., LaMnO3 and LaSr2Mn2O7) and for corundum
systems like V2O3 or α-Fe2O3.

5.3.1. The case of manganites. In 1998, two experimental works [95, 96], using the
REXS technique at the Mn K-edge around a forbidden reflection in La0.5Sr1.5MnO4 and
LaMnO3 perovskite compounds, have reported observation of scattered intensity in the rotated
polarization channel (σπ ), which has been presented as providing direct experimental evidence
of the theoretically predicted orbital ordering in these materials.

In the particular case under consideration, the excitation of the Mn 1s electron to empty
4p states (split in their y and x , z components by an energy � due to some interaction with
the surroundings) gives rise to nonzero resonant scattered intensity proportional to �2 at the
forbidden reflections (300), which is sensitive to the difference between the ASF of the two
orbitally ordered sublattices. The origin of the splitting� is not specified in the model proposed
in [95, 96], but the authors clearly stated that one possible source is the Coulomb interaction
between the 4p conduction band states and the ordered 3d orbitals. An alternative mechanism,
they suggested, comes from the coherent Jahn–Teller distortion (JTD) of the oxygen octahedra
surrounding the Mn atoms that accompanies the orbital ordering, with the long axis always
along the occupied 3d eg orbital.

It was finally demonstrated in [84] for La0.5Sr1.5MnO4 and LaMnO3 and in [85] for
LaSr2Mn2O7 that the main signal comes from the oxygen distortion, i.e., it is a consequence of
the Jahn–Teller and not of the orbital ordering, which plays a minor role. Such an analysis was
performed with the help of ab initio calculations, and the anomalous signal of the forbidden
reflections was perfectly understood both qualitatively and quantitatively, simply invoking the
Jahn–Teller effect, as an ordered geometrical distortion around the resonant ions.

For example, in the case of LaSr2Mn2O7, below TC = 210 K, a series of superlattice
reflections corresponding to an orthorhombic distortion of the high-temperature tetragonal
lattice I 4/mmm is found [85]. The total anomalous scattering factor depends on the difference
between the local amplitudes of the two Mn ions connected by the (0 1

2 0) translation in
orthorhombic units. Since the two Mn3+ ions connected by the (0 1

2 0) translation have different
local symmetries, they contribute to the scattering amplitude. In order to write their contribution
explicitly, we make use of the following relations, describing the symmetry operations that
connect the 8e Mn3+ sites to one another: F2 = Î F1, F5 = σ̂x(y)F1, F6 = Î σ̂x(y)F1, F3 = F1,
F4 = F2, F7 = F5, F8 = F6, where Fi indicates the i th ion, Î is the inversion, and σ̂x(y)

the mirror operator with respect to the x(y) plane. These relations can be derived from the
International Tables for Crystallography, No 63 (rotated) [86]. In this way the Bragg condition
can be rewritten as ( f j is the ASF)

A = e2π z0( f1 − f5 + f3 − f7)+ e−2π z0( f2 − f6 + f4 − f8)

= 2[e2π z0 + Î e−2π z0][1 − σ̂x(y)] f1 (129)

where z0 = 0.096 96. The atomic scattering factor is scalar with respect to rotoinversion
operations: it can be written as the scalar product between two tensors, one representing the
properties of the system, the other the properties of the light. When we write equation (129)
the inversion or mirror operators are intended to act only on one of the previous two tensors,
leaving the other unaltered. Since we are dealing with nonmagnetic properties in the dipole
approximation, the two tensors can only have rank zero or two. The scalar is forbidden
because of the mirror symmetry of equation (129), thus recovering the extinction rule for
the usual Thomson scattering. Of the five components of the rank-two tensor, only the
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Figure 4. (a) Energy dependence (experiment and theory) of the fluorescence intensity from
the LaSr2Mn2O7 single crystal at T = 170 K close to the Mn K absorption edge. (b) Energy
dependence (experiment and theory) of the superlattice reflection (−1/4, 1/4, 10) in the σσ channel
at T = 170 K. (c) The same as (b) in the σπ channel. R is the radius of the cluster used in the
calculations. •••, experimental points; ——, theory, with cluster radius R = 5 Å; — — —
and · · · · · · (with finite difference method), cluster radius R = 3 Å, with and without orbital order,
respectively [85].

symmetric combination Fxy + Fyx survives, since it changes sign under the action of both
mirror symmetries σx(y). In contrast, all the other four components (Fxz + Fzx , Fyz + Fzy ,
Fx2−y2 , and F3z2−r2 ) are invariant with respect to at least one of the two mirror symmetries
σx(y) and their contribution in equation (129) vanishes. This tensor is coupled to the similar
linear combination ei

x eo
y + ei

yeo
x . In this way it is possible to calculate the resonant signal by

means of an MS calculation. The results, shown in figure 4, in excellent agreement with the
experiment, demonstrate that the main peak is due to the effect on 4p states of the Jahn–Teller
oxygen distortion.

5.3.2. The case of V2O3 and α-Fe2O3. Third generation radiation sources have made
possible the detection of relatively small effects in crystal electronic structure due either to
magnetic anisotropy or to interference between dipole and quadrupole (E1–E2) transition
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matrix elements. For example, it is now well established that K-edge circular dichroism in
absorption is sensitive to the angular orbital moment Lz in magnetic spectroscopies such as
XMCD (x-ray magnetic circular dichroism), or to the peculiar physical quantity Lz�z (� is
the toroidal moment) in nonmagnetic spectroscopies such as XNCD (x-ray natural circular
dichroism). However, if a paramagnetic system has a global inversion symmetry, even though
at a local level this symmetry is broken, the resulting XNCD signal vanishes. A similar
situation arises, mutatis mutandis, for XMCD in many antiferromagnets, where the locally
broken time-reversal symmetry can be globally restored, making the total dichroic signal zero.
A common way to circumvent this limitation is to use anomalous x-ray diffraction, where the
local transition amplitudes are added with a phase factor that can compensate the vanishing
effect due to the global symmetry. This technique has been widely used for antiferromagnets
to study local magnetic effects. The same technique can be used to measure the quantity Lz�z

for systems with a global inversion symmetry (see [87] for further details). To show how this is
possible, we analyse the measured Bragg-forbidden (00.3)h Finkelstein reflection, in systems
belonging to the corundum crystal class having a global inversion symmetry, namely, V2O3 and
α-Fe2O3.

If we focus our theoretical analysis on the paramagnetic corundum phase of V2O3 (space
group R3̄c), then we can neglect magnetic contributions. In the corundum systems the local
symmetry on each scattering atom is Ĉ3. Thus equation (128) imposes the following restriction:
only the irreducible tensors whose azimuthal numbers with respect to the threefold axis are 0
or ±3 are allowed. If we choose the quantization axis coincident with the threefold axis, for
q = (00.3)h , equation (122) becomes

A(k, ω) = e2π it f1 + e−2π it f2 + eiπe2π it f3 + eiπe−2π it f4 = (e2π it + e−2π it Î )(1 − m̂x) f1

=
{

2 cos(2π t)(1 − m̂x) f1 (E1–E1 and E2–E2)

2i sin(2π t)(1 − m̂x) f1 (E1–E2)
(130)

where we used the symmetry operations of the space group R3̄c and t = 0.1537. The mirror
m̂x is such that (x, y, z) → (−x, y, z). For the chosen reference frame its action on spherical
tensors is given by [97] m̂x F (p)

q = (−1)P+p F (p)
−q , where P is the parity of the tensor (+1 for

E1–E1 and E2–E2 tensors and −1 for E1–E2 tensors). The combined action of glide-plane
and C3 symmetry forbids any E1–E1 contributions, as expected, and leaves us with only three
possible terms: two come from the E1–E2 channel (F (2)

0 and F (3)
3 − F (3)

−3 ) and the other is of

E2–E2 origin: F (4)
3 − F (4)

−3 , the one recognized in [91].
Their polarization and wavevector dependence shows that the signal is different from zero

only in the σπ channel and only for T (2)
0 and T (4)

3 − T (4)
−3 . In fact, the T (3)

3 − T (3)
−3 term is

proportional to kx − k ′
x or ky − k ′

y , where k and k′ are the incident and scattered wavevectors
and x and y are orthogonal to the trigonal axis. In the geometry of the (00.3)h, kx = k ′

x and
ky = k ′

y at any azimuthal angle.
It is now easy to compare the theoretical azimuthal dependence around the momentum

transfer h̄q with the experimental one [83]: the contribution of T (2)
0 is constant with respect

to the azimuthal angle φ around the q-vector, while that of T (4)
3 − T (4)

−3 is threefold periodical
in the amplitude [91]. Note that time-reversal even quantities are real in the E2–E2 channel
and imaginary in the E1–E2 channel [94]. Because of the imaginary unit in the E1–E2 term
of equation (130), both amplitudes are real and interfere. Thus, the global dependence in the
scattered intensity is proportional to (α + sin(3φ))2, i.e., a threefold modulation of the sixfold
periodic intensity. The constant α is the ratio of the F (2)

0 and the F (4)
3 − F (4)

−3 matrix elements
and incorporates the relative weight of the radial matrix elements together with the geometrical
factors of the corresponding tensors T (p)

q .
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In order to estimate such a constant, we have performed a numerical simulation with a
multiple-scattering program implemented in the FDMNES package [98]. The results support
our previous theoretical considerations. The energy scan shows no features at E1–E1 energies,
as experimentally detected while a structure exists around the 3d energies (5465 eV). Also, the
azimuthal scan of this structure is compatible with the experimental data and makes clear its
double-component origin. The possibility to evaluate separately the two contributions in the
FDMNES program allows us to estimate the ratio between the constant E1–E2 signal and the
maximum of E2–E2: α = 0.05.

6. Discussion on the convergence of the MS series

As illustrated in the previous sections, both photoelectron diffraction and photoabsorption are
most sensitive to structural details for low photoelectron kinetic energies, say below 100–
150 eV, as measured from the Fermi level. This is due to the fact that the angular behaviour of
the electron–atom scattering factor ranges from being nearly isotropic at very low photoelectron
energies to being strongly forward peaked at very high energies (>1000 eV). The need to use
the low energy part of these spectroscopies to extract the maximum of structural information
justifies the efforts to devise new methods for analysing the spectra and to improve the theory.
The elimination of the MT approximation for the potential and the extension of the theory to
many channels to describe local correlations [37] go in this direction. Another strategy has
been to use the full MS approach in calculating the low energy signals and a fitting procedure
that fits at the same time the structural parameters and the photoelectron damping, so as to
account for the inelastic processes which are insufficiently well described by the present theory.
This approach has met with some success, as we have tried to show, especially for these two
spectroscopies.

Moreover, the use of full MS approach avoids problems connected with the convergence
of the MS series, as given by expression (70). Indeed, as discussed by Natoli and Benfatto [10],
the MS series does not converge at all energies. Actually, its convergence depends on the
value of the spectral radius ρ(GTc), which is defined as the largest modulus of the eigenvalues
of the corresponding operator. When the kinetic energy of the electron is decreased, this
spectral radius will increase and will eventually become larger than unity, therefore preventing
any convergence. This usually happens around 50 eV of photoelectron kinetic energy. Note
however that any process that will affect either the propagator matrix G or the transition matrix
Tc of the sample will change this spectral value and hence the convergence properties of the
multiple-scattering series. This is typically the case when including a damping to account for
the vibrations of the atoms (which changes Tc) or a damping of the wavefunction to account
for inelastic losses (which changes both Tc and G). In both cases, it will have the effect of
decreasing the spectral radius, thereby extending the convergence domain of the series.

In figure 5 we present a comparison between a full multiple-scattering calculation, obtained
by numerically inverting the multiple-scattering matrix, and the series expansion approach
truncated at the first, second, third, fourth and fifth orders respectively, where the order is the
value of the exponent n in the series (70). These calculations correspond to simulations of the
P 2p core level azimuthal modulations from an InP(110) surface, where the surface component
was isolated from the bulk contribution by making use of the surface core level shift. Here,
the kinetic energy of the 2p electrons was set to the measured value of 34 eV and the internal
polar emission angle to 36◦ according to experimental conditions. The structure used for the
simulations corresponds to the rigid rotation type of relaxation, the P and In pairs in the first
layer rotating by a relaxation angle ω1 = 23◦ and those in the second layer counterrotating by
ω2 = −5◦, as described by Gota et al [102]. The calculations were performed for a cluster of 59
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Figure 5. Comparison of the full multiple-scattering calculation with the series expansion approach
up to order five for low energies. Calculations have been performed for P 2p core levels at a kinetic
energy of 34 eV in the case of an InP(110) cluster. (f) The full multiple-scattering calculation while
(n) for n = 1, 5 gives the result for the nth scattering order.

atoms lying within a sphere of 8.44 Å centred on the photoabsorber. Check calculations with 85
atoms lying within 9.53 Å of the emitter did not show any appreciable difference, demonstrating
thereby that convergence of the cluster size had been achieved. Therefore, the size of the cluster
used cannot account for the discrepancies observed. Comparison between the full multiple-
scattering calculation and the series expansion results up to order five shows clearly here that
for such a low kinetic energy the multiple-scattering series does not converge. As shown by
Gota et al [102], the full multiple-scattering calculation does give a very good agreement with
the experimental results. None of the series expansion calculations can give such an agreement,
and the lack of convergence is very clear here, signalled by the rapid variations in the shape
of the modulations as a function of the scattering order. Actually, we checked in this case that
among the eigenvalues of the GTc operator at least one had modulus larger than unity.

It is also worth noticing that the rate of convergence of the MS series can be different in
PED and XAFS. As illustrated above, if we neglect inelastic losses, the integral of the PED
signal over all directions of space should give the XAS modulations, as stated by the optical
theorem that ensures the conservation of flux. This was recognized more than 30 years ago by
Lee [99] in the early days of PED and EXAFS in an approximate way and shown to be valid
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Figure 6. EXAFS versus PED summed over all directions. The calculations have been made with
a nine-atom MgO cluster without any damping. (a) Single-scattering PED (——) and double-
scattering PED (· · · · · ·); (b) PED truncated to order 3 (——), order 4 (· · · · · ·) and order 5
(— — —); (c) EXAFS with contributions up to order 2 (——) and order 4 (· · · · · ·).

to all orders of perturbation theory by Mustre de Leon et al [100]. For sake of completeness,
this equivalence has been rederived at the end of section 3.1 and is illustrated numerically in
figure 6. Here, the PED and EXAFS signals have been calculated using a multiple-scattering
series expansion approach, such as defined by the expression (70) of the scattering path operator
τ , on a nine-atom MgO cluster. No damping of any sort was included. The integration of the
PED signal over the 4π steradian was performed using a Gaussian quadrature formula with
1202 weighted points, as derived by Lebedev and Laikov [101]. The series expansion was
carried out up to the fourth scattering order for EXAFS and to the fifth for PED (because of
the strong forward peaking of the scattering factor when the energy increases, PED does not
converge as fast as EXAFS). The agreement between the EXAFS and the PED signal is clearly
excellent once the MS series has converged (which corresponds to the third order of PED here).
It thereby provides a numerical demonstration of the optical theorem. Small discrepancies arise
at the low energies (between 100 and 140 eV). They are due to an insufficient convergence
of the multiple-scattering series in this energy range (below 50 eV, the multiple-scattering
series can even diverge [10], as illustrated above), and it is a consequence of the fact that the
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optical theorem is only valid on fully converged signals. This is seen very clearly here as first
and second order PED do no match even the second order EXAFS signal. This demonstates
unambiguously that the optical theorem is valid for fully converged scattering path operators.

7. Conclusion

We have presented a unitary cluster approach for the description of many spectroscopies which
have the common feature that the measured spectrum contains information collected by an
electron excited within the material under study. This does not put restrictions on the type of
particles used as a probe or detected by the analyser, as we have reviewed it. It should be noted
that other techniques involving an electron as the probe particle and not presented here for lack
of space can also be described within the same framework. This is the case for instance of
Bremsstrahlung isochromat spectroscopy (BIS) or scanning tunnelling microscopy (STM) and
many others.

Starting from a many-body description within the multichannel scattering theory, we have
reduced the system to one described by an effective one-electron Schrödinger equation that
can be handled easily with the standard multiple-scattering tools, and in particular within the
scattering path operator framework. This framework is particularly convenient for numerical
calculations as it disconnects the numerically demanding scattering part from the electron
excitation part and, when electrons are detected, the electron escape part, thereby allowing
us to compute the multiple-scattering problem independently of the angular positionning of the
incoming and outgoing beams, whatever their nature.

This derivation, making use of a Hedin–Lundqvist type of optical potential, allowed us
to give clear physical grounds to the phenomenological concept of mean free path and make
an unambiguous link to the size of the cluster needed, which actually depends on whether the
probe electron is detected or not.

This unitary approach allowed us to make a direct comparison of the various spectroscopies
we have derived here. As a by-product, it shows that once we have a reliable multiple scattering
code to compute the scattering path operator, or equivalently the scattered wavefield amplitudes
Bi

L(k0) given by equation (51), we can model many spectroscopies.
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Appendix A. Derivation of the MS equations

For the convenience of the reader we derive here the solution of the Dyson-like equation

[∇2 + k2 − Vc(r)
]

φ(r) =
∫

�opt(r, r′; h̄ω)φ(r′) dr′ (A.1)

subject to the asymptotic scattering boundary conditions

φ(r) �
(

k

16π3

) 1
2
[

eik·r + f (r̂; k)
eikr

r

]

(A.2)
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in the framework of multiple-scattering theory and in the non-muffin-tin case. Unless explicitly
stated we shall use real spherical harmonics.

The main ingredients for this derivation are the single- and two-centre expansions of the
free Green function with outgoing wave boundary conditions. They are given by

(a) around one centre located at the origin,

G+
o (r − r′; E) = − eik|r−r′ |

4π |r − r′| =
∑

L

JL(r<)H̃
+
L (r>) (A.3)

with H̃ +
L (r) = −ik H +

L (r) and the same definitions as in section 3,
(b) around two centres located at Ri and R j , defining ri = r − Ri and Ri j = Ri − R j , and

provided that Ri j > ri + r j ,

G+
o (r − r′; E) =

∑

L ,L ′
JL(ri )G

i j
L L ′(E)JL ′(r′

j) (A.4)

where

Gi j
L L ′(E) = 4π

∑

L ′′
il−l′+l′′ C L ′′

L L ′ H̃ +
L ′′(Ri j) (A.5)

are the real space KKR structure factors already introduced by (47) in section 3 and
(c) when the two centres are such that ro > Rio + ri , where o is the origin of coordinates,

G+
o (r − r′; E) =

∑

L ,L ′
JL(ri )J

io
L L ′(E)H̃ +

L ′(r
′
o) (A.6)

with

J io
L L ′(E) = 4π

∑

L ′′
il−l′+l′′ C L ′′

L L ′ JL ′′(Rio). (A.7)

We assume here that E > 0 in order to treat scattering states; however, the above relations still
hold for E < 0, provided we take the analytic continuation of the functions of energy appearing
in the above equations and in (A.2) we put to zero the incoming plane wave. In this way within
the same formalism we can also treat bound states. For simplicity we consider only short range
potentials (the extension to long range ones is however straightforward as will be apparent from
the following). Then there exists a volume�o enclosing all the atoms of our system so big that
in ��o, the complement of �o in the whole space, the solution of (A.1) is of the form (A.2).
We partition this ’molecular’ volume in N non-overlapping cells � j with centres at r j (they
might even be empty, i.e. not enclosing a physical atom), filling completely �o (i.e. without
interstices, so that �o = ∑N

j=1� j ) in such a way that

(a) there is a finite, however small, neighbourhood around the origin of each cell lying
completely in the cell (if there is an atom inside the cell, its nucleus should coincide with
the origin) and

(b) the shortest inter-cell vector, joining the origins of nearest neighbours cells, is larger than
any intra-cell vector.

We then start from the obvious equality involving surface integrals

N∑

j=1

∫

S j

[

G+
o (r − r′)∇φ(r′)− φ(r′)∇G+

o (r − r′)
] · n j dσ ′

j

−
∫

So

[

G+
o (r − r′)∇φ(r′)− φ(r′)∇G+

o (r − r′)
] · no dσ ′

o = 0 (A.8)
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valid for all r and with obvious meaning of the symbols, provided φ(r) is continuous with its
first derivatives, as required by the solution of the Schrödinger-like equation.

By taking r inside �i such that ri −→ 0, we use (A.3) in the surface integral over Si ,
(A.4) in the integral over Sj and (A.6) in the one over So. We then find

∑

L

JL(ri)

{∫

Si

[

H̃ +
L (r

′
i )∇φ(r′

i )− φ(r′
i )∇H̃ +

L (r
′
i )

]

· ni dσ ′
i

+
∑

j �=i

∑

L ′
Gi j

L L ′

∫

S j

[

JL ′(r′
j)∇φ(r′

j )− φ(r′
j )∇JL ′(r′

j )
]

· n j dσ ′
j

−
∑

L ′
J io

L L ′

∫

So

[

H̃ +
L ′(r

′
o)∇φ(r′

o)− φ(r′
o)∇H̃ +

L ′(r
′
o)

]

·no dσ ′
o

}

= 0 (A.9)

so that, due to the angular completeness of the set JL (r), the expression inside the brackets { }
should be zero for each L.

Similarly, if we take r ∈ ��0 with r′ inside �i , we obtain the equation

∑

L

H̃ +
L (r0)

{ N∑

j=1

∑

L ′
J 0 j

L L ′

∫

S j

[

JL ′(r′
j)∇φ(r′

j )− φ(r′
j )∇JL ′(r′

j )
]

· n j dσ ′
j

−
∫

So

[

JL(r
′
o)∇φ(r′

o)− φ(r′
o)∇JL(r

′
o)

] · no dσ ′
o

}

= 0. (A.10)

We now introduce inside each cell � j basis functions � j
L(r j ) which are solutions of the

Dyson-like equation (A.1) and behave at the origin like JL(r j ). They constitute a complete set
so that the general solution φ(r) can be locally expanded as

φ(r j ) =
∑

L

A j
L(k)�

j
L(r j ).

Likewise, in the outer domain ��o, in order to impose the boundary conditions (A.2), we
can take

φ(ro) =
∑

L

Ao
L (k)

[

JL(ro)+
∑

L ′
H̃ +

L ′(ro)TL ′L

]

(A.11)

where Ao
L(k) = ilYL (k̂)(k/π)1/2, due to the well known decomposition of a plane wave.

Inserting these expressions into (A.9), using the relation
∫

S0

[

H̃ +
L ′(ro)∇JL (ro)− JL(ro)∇H̃ +

L ′(ro)
]

·no dσo = δL L ′

and the identity
∑

L ′
J io

L L ′ il
′
YL ′(k̂) = ilYL(k̂)e

ik·rio (A.12)

which is obtained from (A.7) by observing that
∑

L ′
C L ′′

L L ′ YL ′(k̂) = YL(k̂)YL ′′(k̂)

we derive directly equation (43) of section 3
∑

L ′
Ci

L L ′ Ai
L(k) = Ao

L(k)−
∑

j

∑

L ′,L ′′
(1 − δi j)G

i j
L L ′ S

j
L ′ L ′′ A

j
L ′′(k) (A.13)

with the definitions (46) for the surface integrals Ci
L L ′ and Si

L L ′ .
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We can use a similar approach to solve equation (A.10). The counterpart of (A.13) is
written then as

∑

L ′′

[
∑

j

∑

L ′
J 0 j

L L ′ S
j
L ′ L ′′ A

j
L ′′(k)− TL L ′′ Ao

L ′′(k)

]

= 0. (A.14)

Making use of the definition (48) of the coefficients Bi
L(k), the previous equation can be

rewritten as
∑

i

∑

L ′

[

J 0i
L L ′ Bi

L(k)− TL L ′ Ao
L ′(k)

] = 0. (A.15)

From the expressions (51) of Bi
L(k) and (44) of Ai

L(k), we deduce, using the
identity (A.12) and the definition of Ao

L(k), that

Bi
L(k) =

∑

j

∑

L ′,L ′′
τ

i j
L L ′ J

j0
L L ′′ Ao

L ′′(k).

Replacing into the expression (A.15) eventually leads to

TL L ′ =
∑

i, j

∑

�,�′
J 0i

L�τ
i j
��′ J

j0
�′L ′ . (A.16)

In the case of long range potentials (or if the short range potential is substantially different
from zero in the outer region) we have to supplement this equation with a similar one obtained
from (A.8) by taking r ∈ ��o, describing the effect of the scattering by the external potential.
However, the solution inside the central cell is very often rather insensitive to the potential in
the external region, provided the radius of the cluster is greater than the mean free path of the
photoelectron at the energy considered. Clearly the above formalism can be easily extended to
treat bound states.

The solution of (A.13) proceeds via the calculations of the surface integrals Ci
L L ′ and Si

L L ′

and the structure factors Gi j
L L ′ . These latter are routinely calculated and in principle there should

be no problem in also calculating the surface integrals Ci
L L ′ and Si

L L ′ . However, their practical
calculation for polyhedral cells of general shape, though feasible, has turned out to be rather
complicated. Recently, however, a practical method for generating basis functions for truncated
potentials inside their bounding sphere has led to a considerable advance for the calculation of
the cell T -matrices T i

L L ′ = ∑

L ′′ Si
L L ′′(Ci )−1

L ′′ L ′ introduced in section 3 and the implementation
of a computer code for non-MT potentials [103]. In the meantime, the usual approach is to use
cells of spherical shape, inscribed in the polyhedrons. The filling of space in this case leaves
the problem of the interstitial region (IR), which can be minimized by increasing the number of
empty spheres. However, in order to treat the irregular shape of the remaining IR one is obliged
to approximate the potential by a constant (e.g. its volume average). By absorbing this constant
into the definition of energy the interstitial potential becomes zero, so that the surface integrals
Ci

L L ′ and Si
L L ′ and (A.13) remain unchanged, by application of the Green’s theorem. A further

simplification, though not necessary, is achieved by replacing the potential inside each sphere
by its angular average, so that one has to deal with spherically symmetric potentials. In this
case the basis functions �i

L(ri) can be written as Ri
L (ri )YL(r̂i ), where Ri

L (ri ) is the solution
of the radial Schrödinger equation inside sphere i . Consequently the surface integrals Ci

L L ′ and
Si

L L ′ reduce to

Ci
L L ′ = kδL L ′ R2

s W
[−ih+

l , Ri
l

]∣
∣
r=Rs

and

Si
L L ′ = δL L ′ R2

s W
[

jl, Ri
l

]∣
∣
r=Rs
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where we have introduced the Wronskian of two functions f (r) and g(r) as W [ f, g] =
f g′ − g f ′ calculated at the sphere radius Rs . Then the atomic scattering amplitude T i

L L ′ =
∑

L ′′ Si
L L ′′(Ci )−1

L ′′L ′ , also known as the atomic T -matrix, takes the form

T i
L L ′ = δL L ′ t i

l = δL L ′ k−1
W

[

jl, Ri
l

]∣
∣
r=Rs

W
[−ih+

l , Ri
l

]∣
∣
r=Rs

(A.17)

which is the expression one would find by solving the scattering problem for a spherical wave
of angular momentum l impinging on a spherical potential truncated at radius r = Rs . From
scattering theory one also has that t i

l = k−1 exp(iδl) sin δl , where δl is the phase shift of the
radial solution Rl(r). It is the shift caused by the potential to Rl(r) with respect to the free
solution jl(r). If the potential is real, conservation of flux requires that k|tl |2 = Im[tl] (this is
the optical theorem), so that δl is real; otherwise, k|tl |2 < Im[tl], implying that δl is complex
and the difference Im[tl] − k|tl |2 is related to the loss of flux due to the absorptive part of the
potential, which becomes the source of the damping of the electronic wave (see section 3.3).
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